Contenido

Prefac	cio Cio	XV
Agrad	lecimientos	xvii
Acerc	a del autor	xix
Nome	Nomenclatura	
Capítu	ulo 1 Introducción a la ingeniería de procesos de separación	1
1.1.	Importancia de las separaciones	1
1.2.	El concepto de equilibrio	2
1.3.	Transferencia de masa	4
1.4.	Métodos para resolver los problemas	5
1.5.	Prerrequisitos	7
1.6.	Otras fuentes sobre ingeniería de procesos de separación	8
1.7.	Resumen-Objetivos	9
	Referencias	9
	Tarea	10
Capítu	ulo 2 Destilación instantánea	12
2.1.	Método básico de destilación instantánea	12
	Forma y fuentes de los datos de equilibrio	14
	Representación gráfica del equilibrio binario vapor-líquido	16
	Destilación instantánea binaria	21
	2.4.1. Procedimiento secuencial de solución	21
	Ejemplo 2-1. Separador de evaporación instantánea para etanol y agua	24
	2.4.2. Procedimiento de solución simultánea	27
2.5.	Equilibrio vapor-líquido con varios componentes	29
	Destilación instantánea de varios componentes	34
	Convergencia simultánea con varios componentes	40
	Cálculo de los tamaños	45
2.9.	Uso de tambores de destilación existentes	49
2.10.	Resumen-Objetivos	50
	Referencias	51
	Тагеа	52
	Apéndice al capítulo 2 Simulación en computadora de la destilación instantánea	59
		vii

Capíti	ulo 3 Introducción a la destilación en columna	65
3.1.	Desarrollo de una cascada de destilación	65
	Equipo de destilación	72
	Especificaciones	74
	Balances externos de la columna	76
	Ejemplo 3-1. Balances externos para destilación binaria	79
3.5.	Resumen-Objetivos	81
	Referencias	81
	Tarea	81
Capíti	do 4 Destilación en columna: balances internos, etapa por etapa	86
4.1.	Balances internos	86
4.2.	Métodos de solución de etapa por etapa, para destilación binaria	90
	Ejemplo 4-1. Cálculos etapa por etapa con el método de Lewis	94
4.3.	Introducción al método de McCabe-Thiele	97
4.4.	Línea de alimentación	101
	Ejemplo 4-2. Cálculos de la línea de alimentación	106
4.5.	Método completo de McCabe-Thiele	109
	Ejemplo 4-3. Método de McCabe-Thiele	109
	Perfiles para destilación binaria	112
4.7.	Calentamiento con vapor directo	114
	Ejemplo 4-4. Análisis de McCabe-Thiele de calentamiento	
	con vapor directo	114
4.8.	Procedimiento general de análisis McCabe-Thiele	118
harmon,	Ejemplo 4-5. Destilación con dos alimentaciones	120
4.9.	Otras situaciones en las columnas de destilación	125
	4.9.1. Condensadores parciales	125
	4.9.2. Vaporizadores totales	126
	4.9.3. Corrientes laterales o líneas de salida	126
	4.9.4. Vaporizadores intermedios y condensadores intermedios	128
	4.9.5. Columnas de agotamiento y enriquecimiento	129
4.1 0.	Condiciones límite de operación	130
4.11.	Eficiencias	133
4.12.	Problemas de simulación	135
4.13.	Usos nuevos para columnas viejas	136
4.14.	Reflujo subenfriado y vapor sobrecalentado al plato inferior	138
4.15.	Comparaciones entre los métodos analíticos y los gráficos	140
4.16.	Resumen-Objetivos Referencias	142
		143
	Tarea	144
	Apéndice al capítulo 4 Simulaciones de destilación binaria en computadora	158
Capítu	do 5 Introducción a la destilación de varios componentes	161
5.1.	Dificultades de cálculo	161
	Ejemplo 5-1. Balances externos usando recuperaciones fraccionarias	164
	Perfiles para destilación de varios componentes	167
5.3.	Resumen-Objetivos	172
	Referencias	172
	Tarea	172

Capíti	lo 6 Procedimientos de cálculo exacto para destilación de varios componentes	176		
6.1.	Introducción a la solución matricial para destilación de varios componentes	176		
	Balances de masa de componentes en forma de matrices	178		
6.3.	3. Proposición inicial para tasas de flujo			
6.4.	Cálculos de punto de burbuja	181		
	Ejemplo 6-1. Temperatura de punto de burbuja	183		
6.5.	Método θ de convergencia	184		
	Ejemplo 6-2. Cálculo de matrices y convergencia con θ	186		
	Balances de energía en forma matricial	191		
6.7.	Resumen-Objetivos	194		
	Referencias	195		
	Tarea	195		
	Apéndice al capítulo 6 Simulaciones en computadora de columnas	200		
	de destilación de varios componentes	200		
Capíti	do 7 Métodos abreviados aproximados para destilación de varios componentes	205		
7.1.	Reflujo total: Ecuación de Fenske	205		
	Ejemplo 7-1. Ecuación de Fenske	209		
7.2.	Reflujo mínimo: Ecuaciones de Underwood	210		
	Ejemplo 7-2. Ecuaciones de Underwood	214		
7.3.	Correlación de Gilliland para la cantidad de etapas a relación de reflujo finita	215		
	Ejemplo 7-3. Correlación de Gilliland	217		
7.4.	Resumen-Objetivos	219		
	Referencias	219		
	Tarea	220		
Capíti	elo 8 Introducción a métodos complejos de destilación	225		
8.1.	Ruptura de azeótropos con otros separadores	225		
	Ejemplo 8-1. Secado de benceno por destilación	231		
8-2.	Procesos de destilación azeotrópica binaria heterogénea	227		
	8.2.1. Azeótropos heterogéneos binarios	227		
	8.2.2. Secado de compuestos orgánicos parcialmente miscibles con agua	230		
	Ejemplo 8-2. Destilación por arrastre con vapor de agua	232		
	Destilación por arrastre de vapor	234		
	Procesos de destilación a dos presiones	238		
8.5.	Sistemas ternarios complejos de destilación	239		
	8.5.1. Curvas de destilación	240		
	8.5.2. Curvas de residuo	243		
	Destilación extractiva	245		
	Destilación azeotrópica con solvente agregado	251 255		
	Destilación con reacción química			
8.9.	Resumen-Objetivos	258 258		
	Referencias	260		
	Tarea	270		
	Apéndice al capítulo 8 Simulación de sistemas complejos de destilación	210		
Capít	ulo 9 Destilación intermitente	276		
9.1.	Destilación intermitente binaria: Ecuación de Rayleigh	278		

9.2.	Destilación intermitente binaria simple	279		
	Ejemplo 9-1. Destilación simple de Rayleigh	281		
	Destilación intermitente a nivel constante	283		
9.4.	Destilación intermitente por arrastre con vapor de agua			
9.5.	Destilación intermitente en varias etapas	285		
	9.5.1. Relación de reflujo constante	286		
	Ejemplo 9-2. Destilación intermitente en varias etapas	286		
	9.5.2. Relación de reflujo variable	290		
	Tiempo de operación	291		
9.7.	Resumen-Objetivos	292		
	Referencias	292		
	Tarea	293		
Capíti	ulo 10 Diseño de columnas de platos y empacadas	301		
10.1.	Descripción de los equipos en las columnas de platos	301		
	10.1.1. Platos, bajantes y vertederos	304		
	10.1.2. Entradas y salidas	306		
10.2.	Eficiencias de platos	309		
	Ejemplo 10-1. Estimación de la eficiencia general	312		
10.3.	Cálculo del diámetro de la columna	314		
	Ejemplo 10-2. Cálculo del diámetro para una columna de platos	318		
10.4.	Distribución y consideraciones hidráulicas para platos perforados	320		
	Ejemplo 10-3. Distribución de plato y cálculos hidráulicos	324		
10.5.	Diseño de platos de válvulas	327		
10.6.	Introducción al diseño de columnas empacadas	329		
10.7.	Partes internas de las columnas empacadas	329		
10.8.	Altura del empaque. Método de la Hetp	331		
10.9.	Inundación de la columna empacada y cálculo del diámetro	333		
	Ejemplo 10-4. Cálculo del diámetro de una columna empacada	338		
10.10.	Consideraciones económicas	341		
10.11.	Resumen-Objetivos	345		
	Referencias	345		
	Tarea	348		
Capíti	ulo 11 Economía y conservación de energía en la destilación	354		
11.1.	Costos de destilación	354		
	Efectos de la operación sobre los costos	35 4 359		
	Ejemplo 11-1. Estimación del costo para una destilación			
11.3.	Cambios en capacidades de la planta	364 366		
	Conservación de la energía en la destilación			
11.5.	Síntesis de secuencias de columnas para destilación de varios componentes	366		
	casi ideales	270		
	Ejemplo 11-2. Secuenciación de columnas con heurísticas	370		
11.6.	Síntesis de sistemas de destilación para mezclas ternarias no ideales	374		
	Ejemplo 11-3. Desarrollo de procesos para separar una mezcla	376		
	ternaria compleja	270		
11.7.	Resumen-Objetivos	378		
	Referencias	380		
	Tarea	380 382		
		382		

x

Capiti	ulo 12 Absorción y arrastre	385		
12.1.	Equilibrios de absorción y arrastre	387		
	Líneas de operación para absorción	389		
	Ejemplo 12.1. Análisis gráfico de la absorción	392		
12.3.	Análisis del arrastre	394		
12.4.	Diámetro de la columna			
12.5.	Solución analítica: La ecuación de Kremser	396 391		
	Ejemplo 12-2. Análisis de separador de arrastre con la ecuación			
	de Kremser	402		
12.6.	Absorbedores y separadores de arrastre con varios solutos diluidos	403		
12.7.	. Solución matricial para absorbedores y separadores de arrastre			
	con soluciones concentradas	400		
	Absorción irreversible	410		
12.9.	Resumen-Objetivos	411		
	Referencias	412		
	Tarea	413		
	Apéndice al capítulo 12 Simulaciones de absorción y arrastre en computadora	42.		
Capíti	ulo 13 Extracción inmiscible, lavado, lixiviación y extracción supercrítica	424		
13.1.	Procesos y equipos de extracción	424		
13.2.	Extracción a contracorriente	428		
	13.2.1. Método de McCabe-Thiele para sistemas diluidos	428		
	Ejemplo 13-1. Extracción diluida a contracorriente con fases inmiscibles	432		
	13.2.2. Método de Kremser para sistemas diluidos	434		
	Extracción fraccionada diluida	43:		
13.4.	Extracción en una etapa y con flujo cruzado	439		
	Ejemplo 13-2. Extracción de una proteína con una etapa y flujo cruzado	44(
	Extracción con fases inmiscibles y concentradas	443		
	Extracción intermitente	444		
	Procedimientos generalizados de McCabe-Thiele y de Kremser	445		
13.8.	Lavado	448		
44.0	Ejemplo 13-3. Lavado	451		
	Lixiviación	452		
	Extracción con fluido supercrítico	454		
	Aplicación a otras separaciones	457		
13.12.	Resumen-Objetivos Referencias	451		
	Tarea	451 459		
Capíti	ulo 14 Extracción de sistemas parcialmente miscibles	468		
_	<u>-</u>			
	Equilibrios en extracción	468		
14.2.	Cálculos en mezclado y la regla de la palanca	471		
14.3.		474		
144	Ejemplo 14-1. Extracción en una etapa	474		
14.4.	Cascadas de extracción a contracorriente 14.4.1. Balances externos de masa	477		
		477		
	14.4.2. Puntos de diferencia y cálculos de etapa por etapa14.4.3. Problema completo de extracción	479		
	Ejemplo 14-2. Extracción a contracorriente	483 483		
	Ljempio 14-2. Extracción a contracorriente	483		

14.5.	Relación entre los diagramas de McCabe-Thiele y triangulares			
14.6.	Flujo mínimo de solvente			
14.7.	Simulaciones de la extracción en computadora			
14.8.	Lixiviac	ión con tasas de flujo variables	489	
		Ejemplo 14-3. Cálculos para lixiviación	490	
14.9.	Resume	n–Objetivos	492	
	Referen	cias	492	
	Tarea		493	
	Apéndi	ce al capítulo 14 Simulación de la extracción en computadora	499	
Capíti	ılo 15	Análisis de la transferencia de masa	501	
15.1.	Fundan	nentos de la transferencia de masa	501	
15.2.	Análisis	de las columnas de destilación con altura y número de unidades		
	de trans	ferencia (HTU y NTU)	504	
		Ejemplo 15-1. Destilación en una columna empacada	508	
15.3.	Relació	n entre нетр у нти	511	
15.4.	Correla	ciones de transferencia de masa para torres empacadas	513	
	15.4.1.	Correlaciones detalladas para empaques aleatorios	513	
		Ejemplo 15-2. Estimación de H _a y H	515	
	15.4.2.	Correlaciones sencillas	520	
15.5.		s HTU-NTU de absorbedores y separadores de arrastre	521	
		Ejemplo 15-3. Absorción de so ₃	525	
15.6.	Análisis	S HTU-NTU de absorbedores concurrentes	526	
		rencia de masa en un plato	528	
		Ejemplo 15-4. Estimación de la eficiencia de plato	530	
15.8.	Resume	en-Objetivos	531	
	Referen		531	
	Tarea	•	532	
Capíti	ilo 16	Introducción a los procesos de separación con membrana	535	
16.1.	Equipos	s de separación con membrana	537	
		tos relacionados con las membranas	541	
		ción de gases	544	
20121	16.3.1.		544	
	16.3.2	Permeación binaria en sistemas perfectamente mezclados	547	
		Ejemplo 16-1. Permeado de gas bien mezclado-solución	5.,	
		analítica secuencial	549	
		Ejemplo 16-2. Permeación de gas bien mezclado-soluciones	3.7	
		simultáneas analítica y gráfica	550	
	16.3.3	Permeación de varios componentes en sistemas perfectamente	550	
	101010	mezclados	555	
		Ejemplo 16-3. Permeación gaseosa perfectamente mezclada	555	
		de varios componentes	556	
16.4	Ósmosi	[1,112]		
10.4.	16.4.1.		558 559	
	10.4.1.	Análisis de la ósmosis y la ósmosis inversa	558	
	16.4.2	Ejemplo 16-4. Ósmosis inversa sin polarización de concentración	562	
	16.4.2.	Determinación experimental de las propiedades de las membranas	564	
		Ejemplo 16-5. Determinación de las propiedades de membranas	~~.	
		para ósmosis inversa	564	

	Relación entre los diagramas de McCabe-Thiele y triangulares		
	Flujo mínimo de solvente		
	Simulaciones de la extracción en computadora	488	
14.8.	Lixiviación con tasas de flujo variables	489	
	Ejemplo 14-3. Cálculos para lixiviación	490	
14.9.	Resumen-Objetivos	492	
	Referencias	492	
	Tarea	493	
	Apéndice al capítulo 14 Simulación de la extracción en computadora	499	
Capíti	ulo 15 Análisis de la transferencia de masa	501	
15.1.	Fundamentos de la transferencia de masa	501	
15.2.	Análisis de las columnas de destilación con altura y número de unidades		
	de transferencia (HTU y NTU)	504	
	Ejemplo 15-1. Destilación en una columna empacada	508	
15.3.	Relación entre нетр у нти	511	
	Correlaciones de transferencia de masa para torres empacadas	513	
	15.4.1. Correlaciones detalladas para empaques aleatorios	513	
	Ejemplo 15-2. Estimación de H ₂ y H ₃	515	
	15.4.2. Correlaciones sencillas	520	
15.5.	Análisis htu-ntu de absorbedores y separadores de arrastre	521	
	Ejemplo 15-3. Absorción de so,	525	
15.6.	Análisis htu-ntu de absorbedores concurrentes	526	
	Transferencia de masa en un plato	528	
	Ejemplo 15-4. Estimación de la eficiencia de plato	530	
15.8.	Resumen-Objetivos	531	
12101	Referencias	531	
	Tarea	532	
		332	
Capíti	ulo 16 Introducción a los procesos de separación con membrana	535	
	Equipos de separación con membrana	537	
	Conceptos relacionados con las membranas	541	
16.3.	Permeación de gases	544	
	16.3.1. Permeación de mezclas binarias de gases	544	
	16.3.2 Permeación binaria en sistemas perfectamente mezclados	547	
	Ejemplo 16-1. Permeado de gas bien mezclado-solución		
	analítica secuencial	549	
	Ejemplo 16-2. Permeación de gas bien mezclado-soluciones		
	simultáneas analítica y gráfica	550	
	16.3.3 Permeación de varios componentes en sistemas perfectamente		
	mezclados	555	
	Ejemplo 16-3. Permeación gaseosa perfectamente mezclada		
	de varios componentes	556	
16.4.	Ósmosis inversa	558	
	16.4.1. Análisis de la ósmosis y la ósmosis inversa	558	
	Ejemplo 16-4. Ósmosis inversa sin polarización de concentración	562	
	16.4.2. Determinación experimental de las propiedades de las membranas	564	
	Ejemplo 16-5. Determinación de las propiedades de membranas	501	
	para ósmosis inversa	564	

	17.4.2.	Ondas de choque	658
		Ejemplo 17-7. Onda de choque autoafiladora	659
17.5.	Intercar	mbio iónico	663
	17.5.1.	Equilibrio en el intercambio iónico	664
	17.5.2.		667
		Ejemplo 17-8. Movimiento de iones para intercambio	
		divalente-monovalente	668
17.6.	Transfe	rencia de masa y energía	672
	17.6.1.	Transferencia de masa y difusión	672
	17.6.2.	Balances de masa en la columna	674
	17.6.3.	Transferencia de masa con parámetro agrupado	675
	17.6.4.		676
	17.6.5.		677
	17.6.6.	Simuladores detallados	678
17-7.	Solucion	nes de transferencia de masa para sistemas lineales	678
	17.7.1.	Solución de Lapidus y Amundson para equilibrio local con dispersión	679
	17.7.2.	Superposición en sistemas lineales	680
		Ejemplo 17-9. Solución de Lapidus y Amundson para elución	681
	17.7.3.	Cromatografía lineal	683
		Ejemplo 17-10. Determinación de los parámetros de una isoterma	-
		lineal, N, y la resolución, en cromatografía lineal	686
17.8.	Método	LUB para sistemas no lineales	687
		Ejemplo 17-11. Método LUB	690
17.9.	Lista de	control para diseño y operación en la práctica	691
17.10.	Resume	n-Objetivos	693
	Referen	cias	693
	Tarea		696
	Apéndio	ce al capítulo 17 Introducción al simulador Aspen Chromatography	708
Guía c	de locali	zación de problemas en Aspen Plus para separaciones	713
Respu	iestas a p	problemas seleccionados	717
Índice	!		723