List of Topics PART ### **Introduction to the Cell** | CHAPTER | 41 | From Single Cens | | |---|----------|---|----------| | | | to Multicellular Organisms | 28 | | The Evolution of the Cell | 丌 | Single Cells Can Associate to Form Colonies | 28 | | From Molecules to the First Cell | 4 | The Cells of a Higher Organism Become Specialized and Cooperate | 29 | | Simple Biological Molecules Can Form Under
Prebiotic Conditions | 4 | Multicellular Organization Depends on Cohesion
Between Cells | 29 | | Polynucleotides Are Capable of Directing Their Own
Synthesis | 4 | Epithelial Sheets of Cells Enclose a Sheltered Internal
Environment | 30 | | Self-replicating Molecules Undergo Natural Selection
Information Flows from Polynucleotides to | 6 | Cell-Cell Communication Controls the Spatial Pattern
of Multicellular Organisms | 31 | | Polypeptides | 7 | Cell Memory Permits the Development of Complex | | | Membranes Defined the First Cell | 8 | Patterns | 31 | | Mycoplasmas Are the Simplest Living Cells Summary | 10
11 | Basic Developmental Programs Tend to Be Conserved in Evolution | 32 | | From Procaryotes to Eucaryotes | 11 | Eucaryotic Organisms Possess a Complex Machinery for Reproduction | 32 | | Procaryotic Cells Are Structurally Simple But
Biochemically Diverse | 11 | The Cells of the Vertebrate Body Exhibit More Than
200 Different Modes of Specialization | 33 | | Metabolic Reactions Evolve | 12 | Cells of the Immune System Are Specialized for the | | | Cyanobacteria Can Fix CO ₂ and N ₂ | 14 | Task of Chemical Recognition | 34 | | Bacteria Can Carry Out the Aerobic Oxidation of Food Molecules | 15 | Nerve Cells Allow a Rapid Adaptation to a Changing
World | 35 | | Eucaryotic Cells Contain Several Distinctive
Organelles | 15 | Developing Nerve Cells Must Assemble to Form a
Nervous System | 36 | | Eucaryotic Cells Depend on Mitochondria for Their
Oxidative Metabolism | 19 | Nerve Cell Connections Determine Patterns of
Behavior | 37 | | Chloroplasts May Be Descendants of Procaryotic | | Summary | 39 | | Algae | 19 | References | 41 | | Eucaryotic Cells Contain a Rich Array of Internal
Membranes | 21 | | | | Eucaryotic Cells Have a Cytoskeleton | 21 | CHAPTER | 公 | | Protozoa Include the Most Complex Cells Known | 23 | o Hari I D | | | Genes Can Bc Switched On and Off | 23 | Small Molecules, Energy, | | | Eucaryotic Cells Have Vastly More DNA Than They
Need for the Specification of Proteins | 26 | and Biosynthesis | | | In Eucaryotic Cells the Genetic Material Is Packaged | | The Chemical Components of a Cell | 44 | | in Complex Ways | 26 | Cell Chemistry Is Based on Carbon Compounds | 44 | | Summary | 27 | Cells Use Four Basic Types of Small Molecules | 45 | | | | | | | Sugars Are Food Molecules of the Cell | 50 | Reactions Are Compartmentalized Both Within Cells | | |---|----------|--|----------| | Fatty Acids Are Components of Cell Membranes | 51 | and Within Organisms | 87 | | Amino Acids Are the Subunits of Proteins | 56 | Summary | 89 | | Nucleotides Are the Subunits of DNA and RNA | 56 | References | 89 | | Summary | 62 | | | | Biological Order and Energy | 62 | CHAPTER | (句 | | Biological Order Is Made Possible by the Release of
Heat Energy from Cells | 62 | Macromolecules: Structure,
Shape, and Information | 9) | | Photosynthetic Organisms Use Sunlight to Synthesize
Organic Compounds | 63 | Molecular Recognition Processes | 91 | | Chemical Energy Passes from Plants to Animals | 64 | The Information Carried by a Macromolecule Is | 01 | | Cells Obtain Energy by the Oxidation of Biological Molecules | 64 | Expressed by Means of Weak Noncovalent Bonds | 92 | | The Breakdown of Organic Molecules Takes Place in Sequences of Enzyme-catalyzed Reactions | 65 | Diffusion Is the First Step to Molecular Recognition Thermal Motions Not Only Bring Molecules Together | 93 | | Part of the Energy Released in Oxidation Reactions Is | | But Also Pull Them Apart Molecular Recognition Processes Can Never Be Perfect | 96
97 | | Coupled to the Formation of ATP | 66 | Summary | 98 | | The Hydrolysis of ATP Generates Order in Cells | 67 | Nucleic Acids | | | Summary | 67 | Genes Are Made of DNA | 98 | | Food and the Derivation | | DNA Molecules Consist of Two Long Complementary | 98 | | of Cellular Energy | 67 | Chains Held Together by Base Pairs | 99 | | Food Molecules Are Broken Down in Three Stages to
Give ATP | 67 | The Structure of DNA Provides an Explanation for Heredity | 103 | | Glycolysis Can Produce ATP Even in the Absence of
Oxygen | co | Errors in DNA Replication Cause Mutations | 103 | | Oxygen Oxidative Catabolism Yields a Much Greater Amount of Usable Energy | 69
71 | The Nucleotide Sequence of a Gene Determines the Amino Acid Sequence of a Protein | 106 | | Metabolism Is Dominated by the Citric Acid Cycle | 72 | Portions of the DNA Sequence Are Copied into RNA | 107 | | The Transfer of Electrons to Oxygen Drives ATP Formation | 73 | Sequences of Nucleotides in mRNA Are "Read" in Sets of Three | 107 | | Amino Acids and Nucleotides Are Part of the Nitrogen Cycle | 74 | tRNA Molecules Match Amino Acids to Groups of
Nucleotides | 108 | | Summary | 75 | The RNA Message Is Read from One End to the Other by a Ribosome | 109 | | Biosynthesis and the Creation of Order | 75 | Summary | 111 | | The Energy for Biosynthesis Comes from the | | Protein Structure | 111 | | Hydrolysis of ATP
Biosynthetic Reactions Are Often Directly Coupled to | 75 | The Shape of a Protein Molecule Is Determined by Its Amino Acid Sequence | 111 | | ATP Hydrolysis Coenzymes Are Involved in the Transfer of Specific | 77 | Common Folding Patterns Recur in Different Protein
Chains | 113 | | Chemical Groups | 79 | Proteins Are Enormously Versatile in Structure | 115 | | Biosynthesis Requires Reducing Power | 80 | Proteins Show Different Levels of Structural | | | Biological Polymers Are Synthesized by Repetition of
Elementary Dehydration Reactions | 81 | Organization | 118 | | Summary | 82 | Relatively Few of the Many Possible Polypeptide
Chains Would Be Useful | 118 | | The Coordination of Catabolism and | | New Proteins Often Evolve by Minor Alterations of Old Ones | 118 | | Biosynthesis | 82 | New Proteins Often Evolve Through the Combination | | | Metabolism Is Organized and Regulated | 82 | of Different Polypeptide Domains | 120 | | Metabolic Pathways Are Regulated by Changes in Enzyme Activity Catabolic Regulators Can Be Research by an Insulator | 84 | Protein Subunits Can Self-assemble into Large
Structures in the Cell | 121 | | Catabolic Reactions Can Be Reversed by an Input of Energy | 84 | A Single Type of Protein Subunit Can Interact with
Itself to Form Geometrically Regular Aggregates | 121 | | Enzymes Can Be Switched On and Off by Covalent Modification | 87 | Self-assembling Aggregates Can Include Different Protein Subunits and Nucleic Acids | 194 | | There Are Limits to Self-assembly | 126 | Image Reconstruction Techniques Based on | | |---|---------------|---|------------| | Summary | 127 | Diffraction Can Be Used to Extract Additional Information from Electron Micrographs | | | Protein Function | | X-ray Diffraction Reveals the Three-dimensional | | | A Protein's Conformation Determines Its Chemistry | 128 | Arrangement of the Atoms in a Molecule | 158 | | Substrate Binding Is the First Step in Enzyme
Catalysis | 129 | Summary | 159 | | Enzymes Accelerate Reaction Rates Without Shifting | 404 | Cell Culture Cells Can Be Grown in a Culture Dish | 160
161 | | Equilibria | 131 | Chemically Defined Media Permit Identification of | 101 | | Many Enzymes Make Reactions Proceed Preferentially in One Direction by Coupling Them to ATP Hydrolysis | 132 | Specific Growth Factors Eucaryotic Cell Lines Are a Convenient Source of | 162 | | Multienzyme Complexes Help to Increase the Rate of | | Homogeneous Cells | 162 | | Cell Metabolism | 132 | Cells Can Be Fused Together to Form Hybrid Cells | 163 | | Intracellular Membranes Increase the Rates of
Diffusion-limited Reactions | 133 | Summary | 165 | | Protein Molecules Can Reversibly Change Their Shape | 134 | The Fractionation of Cells | | | Allosteric Proteins Are Involved in Metabolic | 134 | and Their Contents | 165 | | Regulation | 135 | Cells Can Be Isolated from a Tissue and Separated | 166 | | Allosteric Proteins Are Vital for Cell Signaling
Proteins Can Be Pushed or Pulled into Different
Shapes | 135 | into Different Types Organelles and Macromolecules Can Be Separated by Ultracentrifugation | 166 | | Energy-driven Changes in Protein Conformations Can
Do Useful Work | 137 | The Molecular Details of Complex Cellular Processes Can Be Determined Only by Studies of Fractionated | 100 | | ATP-driven Membrane-bound Allosteric Proteins Can | | Cell Components | 169 | | Act as Pumps | 137 | Proteins Can Be Separated by Chromatography | 170 | | Protein Molecules Can Harness Ion Gradients to Do
Useful Work | 139 | The Size and Subunit Composition of a Protein Can
Be Determined by SDS Polyacrylamide-Gel
Electrophoresis | 173 | | Summary | 139 | More Than 1000 Proteins Can Be Resolved on a Single | 171 | | References | 139 | Gel by Two-dimensional Polyacrylamide-Gel
Electrophoresis | 175 | | CHAPTER | 7 | Selective Cleavage of a Protein Generates a Distinctive
Set of
Peptide Fragments | 177 | | | <i>/</i> ∠l L | Short Amino Acid Sequences Can Be Analyzed by | | | How Cells Are Studied | בל | Automated Machines | 177 | | Microscopy | 143 | Summary | 178 | | The Light Microscope Can Resolve Details 0.2 μm | | Tracing Cellular Molecules with | | | Apart | 144 | Radioactive Isotopes and Antibodies | 179 | | Different Components of the Cell Can Be Selectively Stained | 145 | Radioactive Atoms Can Be Detected with Great
Sensitivity | 179 | | Tissues Are Usually Fixed and Stained for Microscopy | 145 | Radioisotopes Are Used to Trace Molecules in Cells | 17 | | Living Cells Can Be Seen in a Phase-Contrast or
Differential-Interference-Contrast Microscope | 146 | and Organisms Antibodies Can Be Used to Detect and Isolate Specific Molecules | 179
180 | | The Electron Microscope Resolves the Fine Structure of the Cell | 148 | Hybridoma Cell Lines Provide a Permanent Source of
Monoclonal Antibodies | 183 | | Biological Specimens Require Special Preparation for the Electron Microscope | 149 | Antibodies and Other Macromolecules Can Be
Injected into Living Cells | 184 | | Three-dimensional Images Can Be Obtained by
Electron Microscopy | 151 | Summary | 18 | | Freeze-Fracture and Freeze-Etch Electron Microscopy
Provide Novel Views of the Cell | 152 | Recombinant DNA Technology | 185 | | Individual Macromolecules Can Be Resolved in the Electron Microscope | 154 | Restriction Nucleases Hydrolyze DNA Molecules at Specific Nucleotide Sequences | 18. | | The Detailed Structure of Molecules in a Crystalline
Array Can Be Calculated from the Diffraction Patterns | | Selected DNA Sequences Are Produced in Large
Amounts by Cloning | 18' | | They Create | 154 | Copies of Specific mRNA Molecules Can Be Cloned | 18 | #### List of Topics | Cloned DNA Fragments Can Be Rapidly Sequenced | |---| | Nucleic Acid Hybridization Reactions Provide a | | Sensitive Way of Detecting Specific Nucleotide | | Sequences | | In Situ Hybridization Techniques Are Used to Lecoli | | In Situ Hybridization | Techniques Are Used to Localiz | e | |-----------------------|--------------------------------|---| | Specific Nucleic Acid | Sequences in Chromosomes an | d | | Cells | , | | | 189 | Recombinant DNA Techniques Allow Even the Minor
Proteins of a Cell to Be Studied | 191 | |-----|---|-----| | | Mutant Genes Can Now Be Made to Order | 192 | | 189 | Summary | 194 | | | References | 194 | | 191 | | | # The Molecular Organization of Cells CHAPTER 214 215 Nucleic Acid PART 235 235 | Basic | Ger | 1et | ic | | | | |------------|-----|-----|----|--|--|--| | Mechanisms | | | | | | | | | | | | | | | | Mechanisms | |--| | Protein Synthesis | | The Decoding of DNA into Protein | | RNA Polymerase Copies DNA into RNA | | Protein Synthesis Is Inherently Very Complex | | Specific Enzymes Couple Each Amino Acid to Its
Appropriate tRNA Molecule | | Amino Acids Are Added to the Carboxyl-Terminal End of a Growing Polypeptide Chain | | Each Amino Acid Added Is Selected by a
Complementary Base-pairing Interaction Between Its
Linked tRNA Molecule and an mRNA Chain | | The Events in Protein Synthesis Are Catalyzed on the Ribosome | | A Ribosome Moves Stepwise Along the mRNA Chain | | A Protein Chain Is Released from the Ribosome
Whenever One of Three Different Termination Codons
Is Reached | | The Initiation Process Sets the Reading Frame for Protein Synthesis | | The Overall Rate of Protein Synthesis in Eucaryotes Is
Controlled by Initiation Factors | | Many Inhibitors of Procaryotic Protein Synthesis Are | | DNA | Repair | Mechanisms | |-----|--------|--------------| | | порин | "ICCHAINSING | Useful as Antibiotics Summary | DNA Repair Mechanisms | |--| | DNA Sequences Are Maintained with a Very High
Fidelity | | Directly Detected Spontaneous-Mutation Rates Are
Consistent with Evolutionary Estimates | | Most Mutations in Proteins Arc Deleterious and Arc
Eliminated by Natural Selection | | | | 系 | Low Mutation Rates Mean That Related Organisms
Must Be Made from Essentially the Same Proteins | 216 | |------------|---|-----| | U | If Left Uncorrected, Spontaneous DNA Damage Would
Change DNA Sequences Rapidly | 216 | | | The Stability of Genes Is Due to DNA Repair | 217 | | 199 | The Structure and Chemistry of the DNA Double
Helix Make It Easy to Repair | 220 | | 199
200 | Summary | 221 | | 202 | • | | | 202 | DNA Replication Mechanisms | 221 | | 205 | Base-pairing Underlies DNA Replication as well as DNA Repair | 221 | | | The DNA Replication Fork Is Asymmetrical | 223 | | 206 | The High Fidelity of DNA Replication Requires a "Proofreading" Mechanism | 224 | | 207 | DNA Replication in the 5'-to-3' Direction Is
Intrinsically More Accurate | 226 | | 208 | A Special Nucleotide Polymerizing Enzyme Is Needed
to Synthesize Short Primer Molecules on the Lagging | | | 210 | Strand | 226 | | | Special Proteins Help Open Up the DNA Double Helix in Front of the Replication Fork | 227 | | 211 | Other Special Proteins Prevent DNA Tangling | 228 | | 211 | The Replication of DNA in Eucaryotes and Procaryotes Is Basically Similar | 230 | | D.4.0 | Replication Forks Are Created at Replication Origins | 231 | | 212 | Summary | 232 | | 212 | Viruses | 232 | | 213 | Viruses Are Mobile Genes | 232 | | 214 | The Genetic Component of a Virus Is Either DNA or RNA | 233 | | 214 | The Outer Coat of a Virus May Be a Protein Capsid or a Membrane Envelope | 233 | Viral Chromosomes Usually Code for One or More Enzymes Involved in the Replication of the Viral Viral Genomes Come in a Variety of Forms | ist | of | Tor | pics | xii | |------|-----|-----|--------|------| | JUST | (71 | , | 211.42 | 7.11 | | Viral Chromosomes Can Integrate Themselves into
Host Chromosomes | 236 | Membrane Transport Proteins Can Be Visualized by Freeze-Fracture Electron Microscopy | 272 | |---|------------|--|------------| | RNA Viruses Also Replicate Through the Formation of Complementary Chains | 236 | Vectorial Labeling Reagents Can Be Used to Study
Some Plasma Membrane Proteins of Nucleated Cells | 274 | | Viral Genetic Elements Can Make Cells Cancerous How Did Viruses Evolve? | 238
239 | When Two Cells Are Fused Together, Their Plasma
Membrane Proteins Rapidly Mix | 275 | | Summary | 240 | Membrane Proteins Cluster into Patches When They
Are Cross-linked by Antibodies | 276 | | Genetic Recombination Mechanisms | 240 | Cross-linked Membrane Proteins Are Actively Swept to | | | General Recombination Processes Are Guided by
Base-pairing Interactions Between Complementary
Strands of Homologous DNA Helices | 241 | One Pole of the Cell in the Process of "Capping" Conflicting Views on How Cells Cap: Flow Versus Pull Hypotheses | 278
279 | | General Recombination Is Initiated at a Nick in One
Strand of a DNA Double Helix | 242 | Antibody-induced Redistribution Can Be Used to Determine Whether Two Polypeptides Are Associated | | | Special Proteins Enable DNA Single Strands to Pair with a Homologous Region of DNA Double Helix | 243 | with Each Other in the Plasma Membrane
Lateral Diffusion Rates of Membrane Proteins Can Be | 280 | | Genetic Recombination Usually Involves a | 0.1.1 | Quantified | 281 | | Cross-Strand Exchange General Recombination Aids DNA Repair Processes | 244
247 | Cells Have Ways of Restricting the Lateral Mobility of
Certain of Their Membrane Proteins | 282 | | Site-specific Recombination Enzymes Move Special | 2.15 | Summary | 283 | | Sequences of DNA in and out of Genomes Summary | 247
250 | Membrane Carbohydrate | 283 | | References | 250 | The Carbohydrate in Biological Membranes Is
Confined to the Noncytoplasmic Surface | 284 | | | | Cell-Surface Carbohydrate Is Suspected to Be
Important in Cell-Cell Interactions, But This Has Been
Difficult to Demonstrate | 285 | | CHAPTER | (R) | Summary | 286 | | The Plasma Membrane | W | Membrane Transport of Small Molecules | 286 | | The Lipid Bilayer | 256 | Protein-free Lipid Bilayers Are Impermeable to Ions | 287 | | Membrane Lipids Are Amphipathic Molecules That
Spontaneously Form Bilayers | 256 | But Freely Permeable to Water Membrane-bound Transport Proteins Transfer Specific Small Molecules Across Cell Membranes | 287 | | The Lipid Bilayer Is a Two-dimensional Fluid | 258 | Transport Proteins Form a Continuous Protein | | | The Fluidity of a Lipid Bilayer Depends on Its
Composition | 259 | Pathway Across the Lipid Bilayer Carrier Proteins Behave Like Membrane-bound | 289 | | The Lipid Bilayer Serves as a Solvent for Membrane Proteins | 260 | Enzymes The Membrane Potential That Exists Across the | 289 | | The Lipid Bilayer of the Plasma Membrane Is
Asymmetrical | 261 | Plasma Membrane Is Maintained by a Na ⁺ -K ⁺ Pump | 290 | | Glycolipids Are Found on the Surface of All Plasma
Membranes, But Their Function Is Unknown | 262 | The Ubiquitous Plasma Membrane Na ⁺ -K ⁺ Pump Is
an ATPase | 291 | | Summary | 263 | The Na ⁺ -K ⁺ ATPase Helps Control Cell Volume by
Controlling the Solute Concentration Inside Cells | 294 | | Membrane Proteins | 264 | Some Ca ²⁺ Pumps Are Also Membrane-bound | 305 | | Many Membrane Proteins Are Held in the Bilayer by
Hydrophobic Interactions with
Lipid Molecules | 264 | ATPases Membrane-bound Enzymes That Synthesize ATP Are | 295
295 | | The Use of SDS Polyacrylamide-Gel Electrophoresis
Has Revolutionized the Study of Membrane Proteins | 266 | Transport ATPases Working in Reverse Active Transport Can Be Driven by Ion Gradients | 295 | | The Cytoplasmic Side of Membrane Proteins Can Be
Studied in Red Blood Cell Ghosts | 266 | Active Transport in Bacteria Can Occur by "Group
Translocation" and Can Involve Water-soluble Binding | | | Spectrin Is Loosely Associated with the Cytoplasmic Side of the Red Blood Cell Membrane | 268 | Proteins Some Transmembrane Protein Channels Are "Gated" | 297 | | Glycophorin Extends Through the Red Cell Lipid Bilayer as a Single $lpha$ -Helix | 268 | and Open Only Transiently Asymmetrically Distributed Ion Channels Can | 298 | | Band III of the Human Red Blood Cell Membrane is a | 269 | Generate Ion Currents That Polarize Cells Ionophores Increase the Ion Permeability of Synthetic | 300 | | Transport Protein Bacteriorhodopsin Is a Proton Pump That Traverses | 200 | and Biological Membranes | 301 | 271 the Bilayer as Seven α -Helices Summary | Membrane Transport of Macromolecules and Particles: | | The Binding of Many Ribosomes to an Individual
Messenger RNA Molecule Generates Polysomes | 220 | |---|-------------|---|------------| | Exocytosis and Endocytosis | 302 | Protein Synthesis Is Blocked by Specific Inhibitors | 328
330 | | Exocytosis Occurs by the Fusion of Intracellular
Vesicles with the Piasma Membrane | 303 | Some Proteins Regulate the Rate of Their Own
Synthesis by Binding to the Messenger RNA | 330 | | Triggered Exocytosis Is a Localized Response of the Plasma Membrane and Its Underlying Cytoplasm | 304 | Molecules on Which They Are Made In Eucaryotes Only One Species of Polypeptide Chain Can Be Synthesized on Each Messenger RNA | 330 | | Membrane Fusion Involves Bilayer Adherence
Followed by Bilayer Joining | 305 | Molecule | 331 | | Endocytosis Occurs Continually in Most Cells | 306 | Polyproteins Are Often Made in Eucaryotes | 332 | | Most Endocytotic Vesicles Ultimately Fuse with Lysosomes | 307 | Many Proteins Undergo Covalent Modification After
Their Synthesis | 333 | | Many Endocytotic Vesicles Are Coated | 307 | Some Proteins Are Degraded Soon After They Have
Been Synthesized | 224 | | Coated Pits and Vesicles Provide a Specialized
Pathway for Receptor-mediated Endocytosis of
Specific Macromolecules | 309 | Not All Proteins Synthesized in the Cytosol Remain
There | 334
335 | | Many Cell-Surface Receptors Associate with Coated | 505 | Summary | 335 | | Pits Only After Ligand Binding | 311 | The Endenlasmic Petinsky | | | Some Macromolecules Can Penetrate Cell Membranes Directly | 04.4 | The Endoplasmic Reticulum Attached Ribosomes Define "Rough" Regions of ER | 335 | | Specialized Phagocytic Cells Ingest Particles That | 311 | Smooth ER Is Abundant in Certain Specialized Cells | 336
338 | | Bind to Specific Receptors on Their Surface Phagocytosis Is a Localized Response That Proceeds | 311 | Rough and Smooth Regions of ER Can Be Physically
Separated | 339 | | by a "Membrane-zippering" Mechanism Membrane Vesicular Traffic: How Is It Powered, | 312 | Rough Regions of ER Contain Specific Proteins
Responsible for the Binding of Ribosomes | 340 | | Guided, and Regulated? | 313 | Membrane-bound Ribosomes Synthesize Proteins | | | Summary | 314 | That Pass Through the Membrane During Their
Translation | 341 | | References | 314 | Direct Evidence Favoring Vectorial Discharge Has
Come from Experiments in Bacteria | 342 | | CHAPTER | | Membrane-bound Ribosomes Are Derived from Free
Ribosomes That Are Directed to the ER Membrane by
Special Signal Sequences | 343 | | | 7 | There Is Genetic Evidence for the Signal Hypothesis | 344 | | Internal Membranes and the
Synthesis of Macromolecules | | Some Proteins Cross Membranes by a
Posttranslational Import Mechanism Rather Than by
Vectorial Discharge | 244 | | The Compartmentalization of Higher Cells | 320 | Most Proteins Synthesized in the Rough ER Are
Glycosylated | 344
345 | | Large Eucaryotic Cells Need Internal Membranes | 320 | The Oligosaccharide Is Added to the Growing | 5-10 | | Internal Membranes Divide the Cell into Specialized
Compartments | 320 | Polypeptide Chain on the Luminal Side of the ER The Oligosaccharide is Donated to the Polypeptide by | 347 | | Even Complex Eucaryotic Celis Have Only a Few
Major Intracellular Compartments | 320 | an Activated Lipid and Then Almost Immediately
Modified | 347 | | Intracellular Compartments Permit the Cell to Carry | | Lipids Are Synthesized in the ER Membrane | 350 | | Out Many Incompatible Chemical Reactions
Simultaneously | 323 | Lipid Biosynthesis Is Asymmetric | 351 | | Viruses Reveal the Existence of Highly Organized Pathways Between Host Cell Compartments | 323 | Special Proteins Transfer Phospholipids from the ER to Mitochondria The Luminal Side of an Internal Organelle Is | 351 | | Different Viruses Follow Different Pathways Through the Cell | 325 | Topologically Equivalent to the Outside of the Cell Membrane Growth by Continuous Expansion of the | 352 | | Summary | 326 | ER Ensures the Propagation of Transmembrane | | | The Cytosol | 326 | Asymmetry | 353 | | Most Intermediary Metabolism Takes Place in the
Cytosol | 326 | Summary The Golgi Apparatus | 354 | | Many Proteins Are Synthesized by Ribosomes in the Cytosol | 328 | The Golgi Apparatus Consists of Stacks of Disc-
shaped Cisternae with Associated Small Vesicles | 355 | | The Golgi Apparatus Is Structurally and Biochemically Polarized | 356 | Adhesion Sites May Also Play a Part in Transporting Water-soluble Molecules into the Lumen of | 379 | |---|-----|---|--------------| | The Golgi Apparatus Is Not Yet Understood in
Biochemical Terms | 356 | Double-Membrane Organelles Summary | 380 | | Carbohydrate Structures Are Modified in the Golgi
Apparatus | 357 | References | 380 | | Oligosaccharide-trimming Pathways Are Elaborate and
Precisely Programmed | 359 | OLIABEED | 7 | | The Correct Program of Trimming Is Set by an | | CHAPTER | ίΩί | | Irreversible "Switch" Thrown Early in Oligosaccharide Processing | 359 | The Cell Nucleus | <u>(U)</u> | | Carbohydrate Modification in the Golgi Apparatus
Can Be Detected by Autoradiography | 359 | The Organization of DNA into Chromosomes | 386 | | Proteins Destined for Secretion Are Packaged into
Golgi-associated Secretory Vesicles That Then Fusc
with the Plasma Membrane | 361 | Histones Are Among the Most Highly Conserved
Proteins Known | 386 | | Membrane Components Are Recycled | 362 | The Association of Histones with DNA Leads to the Formation of Nucleosomes, the Unit Particles of | | | Membrane Fusion and Recycling Can Be
Demonstrated by Electron Microscopy | 363 | Chromatin Nucleosomes Are Packed Together to Form Regular | 388 | | Coated Vesicles Are Thought to Play a Major Part in the Intracellular Sorting of Proteins | 365 | Higher-Order Structures | 388 | | Why Have a Golgi Apparatus? | 365 | Histone H1 Proteins Help Pack Nucleosomes Together | 389 | | Summary | 366 | Not All Nucleosomes Are Packed in Precisely the
Same Way | 390 | | Lysosomes and Peroxisomes | 367 | The DNA Helix Is Punctuated by Proteins That Bind to Specific DNA Sequences | 392 | | Lysosomes Are the Principle Sites of Intracellular
Digestion | 367 | Proteins Can Recognize Specific DNA Sequences by
Hydrogen Bonding to Base Pairs and by Sensing Helix | | | Histochemical Staining Demonstrates That Lysosomes
Are Heterogeneous Organelles | 367 | Geometry Historics Restrict the Accessibility of DNA to Other | 394 | | Primary Lysosomes Are Formed by Budding from the Golgi Apparatus | 370 | DNA-binding Proteins and Can Thereby Affect Gene
Regulation | 395 | | Lysosomal Function in Cultured Cells from Patients
Having a Lysosomal Enzyme Deficiency Can Be | | Nucleosome Beads Can Be Nonrandomly Positioned in Chromatin | 395 | | Corrected by Adding the Missing Enzyme to the Culture Medium | 370 | Each Chromosome Probably Contains One Very Long
DNA Molecule Organized in a Series of Looped | | | Only Lysosomal Hydrolases with a Mannose-
Phosphate-containing Oligosaccharide Are | | Domains | 397 | | Internalized | 371 | Bands on Mitotic Chromosomes Reveal an Even
Higher Level of Organization | 397 | | Intracellular Hydrolases Are Probably Directed to
Primary Lysosomes by the Mannose-Phosphate | 050 | Interphase Genes Can Be Seen in Polytene
Chromosomes | 401 | | Marker The Membrane of the Peroxisome Is Formed by | 372 | Each Looped Domain of Chromatin May Correspond to a Separate Unit of Function | 402 | | Budding from the Smooth ER | 373 | Different Domains of Chromatin Appear to Contain | | | Peroxisomes Use Oxygen to Carry Out Catabolic Reactions | 373 | Differently Organized Nucleosomes Most Chromosomal DNA Does Not Code for Essential | 404 | | The Enzyme Content of Peroxisomes Varies with Cell Type | 374 | Proteins | 405
406 | | A Sorting Mechanism Similar to That Used in the | | Summary | | | Lysosomal Pathway May Operate for Other
Intracellular Compartments | 374 | RNA Synthesis and RNA Processing | 406 | | Summary | 376 | Three Different KNA Polymerases Make RNA in
Eucaryotes | 407 | | Organelles with Double Membranes: The Nucleus, Mitochondria, and Chloroplasts | 376 | RNA
Polymerase II Transcribes Some DNA Sequences
Much More Often Than Others | 408 | | Bacteria with Inner and Outer Cell Membranes May | ~.0 | Transcription Occurs on DNA Bound Up in | | | Be Viewed as Models of the Double-Membrane | 000 | Nucleosomes | 411
411 | | Organelles | 377 | New RNA Is Packaged in Ribonucleoprotein Particles The Precursors of Messenger RNA Are Covalently | 411 | | Membrane Proteins May Move Between the Inner and
Outer Bilayers at Adhesion Sites | 378 | Modified at Both Ends | 412 | ### **xvi** List of Topics | RNA Processing Removes Long Nucleotide Sequences from the Middle of RNA Molecules | 414 | The Regulation of Gene Expression in Eucaryotic
Cells Includes Types of Controls Not Found in | | |--|------------|---|------------| | Small Nuclear Ribonucleoprotein Particles May Help
Guide RNA Processing | 415 | Bacteria Eucaryotic Gene Activation Mechanisms Appear to | 447 | | Multiple Intron Sequences Can Be Removed from a Single RNA Transcript | 44.5 | Loosen Chromatin Structure All Along a Gene | 448 | | The Same RNA Transcript Can Be Processed in
Different Ways to Produce mRNAs Coding for Several | 417 | Eucaryotic Gene Activation Probably Occurs in Two
Stages | 449 | | Proteins | 418 | Looped Chromatin Domains Unfold as They Are
Transcribed in Polytene Chromosomes | 450 | | Different Proteins May Be Made from a Single DNA
Coding Sequence at Different Stages of Cell
Development | 410 | Lampbrush Chromosomes Display Their
Transcription Units in Extended Looped Domains | 452 | | What Is a Gene? | 419
421 | Altering the Ends of a Primary RNA Transcript Can
Change the Protein Made | 454 | | The Export of RNA from the Nucleus Requires Molecular Signals | 422 | Are Important Controls Also Exerted by Alterations in the Specificity of RNA Processing and Export? | 455 | | Ribosomal RNAs and Transfer RNAs Are Made on
Tandemly Arranged Sets of Identical Genes | 422 | Summary | 455 | | The Nucleolus Is a Ribosome-producing Machine | 424 | Gene Regulatory Mechanisms and Cell | | | The Nucleolus Has a Highly Organized Structure | 426 | "Memory" | 456 | | The Nucleolus Is Reassembled on Specific
Chromosomes After Each Mitosis | 427 | A Highly Condensed Fraction of Interphase
Chromatin Contains Specially Inactivated Genes | 456 | | Summary | 427 | Two Subclasses of Heterochromatin Can Be
Distinguished | 456 | | The Nuclear Envelope | 429 | An Inactive X Chromosome Is Inherited - | 457
458 | | The Nucleus Is Enclosed by a Double Membrane | 429 | Eucaryotic Genes Can Be Turned Off by a Novel | 400 | | The Nuclear Lamina Helps to Determine Nuclear Shape | 490 | Heritable Mechanism | 459 | | Nuclear Transport Occurs Through Nuclear Pores | 430
432 | Cooperatively Bound Clusters of Gene Regulatory
Proteins Can, in Principle, Be Directly Inherited | 460 | | Nuclear Pores Probably Transport Large Particles
Selectively | 433 | Directly Inherited Patterns of DNA Methylation Help
to Control Some Mammalian Genes | 460 | | The Inner Surface of the Nuclear Lamina Helps to
Organize the Chromosomes | 434 | In Special Cases, Local DNA Sequences Arc Reversibly
Rearranged to Turn Genes On and Off | 462 | | Summary | 435 | Selected Portions of Chromosomes Can Be Either
Deleted or Amplified in Somatic Cells | 464 | | Basic Elements in the Control of Gene
Expression | 435 | Major Rearrangements of Chromosomes Are Usually
Deleterious | 465 | | The Cells of a Multicellular Organism All Contain the | 435 | Summary | 467 | | Same DNA | 436 | | | | Different Cell Types Synthesize Different Sets of Proteins | 436 | The Organization and Evolution of DNA Sequences | 467 | | Different Cell Types Transcribe Different Sets of Genes | 437 | Genetic Recombination Drives Evolutionary Changes | 468 | | Repressor Proteins Inhibit the Transcription of
Specific Genes in Bacteria | 438 | A Large Fraction of the DNA of Most Eucaryotes
Consists of Repeated Nucleotide Sequences | 468 | | Gene Activator Proteins Probably Predominate in
Higher Eucaryotic Cells | 440 | Frequent Genetic-Recombination Events Expand and
Contract Serially Repeated Satellite DNA Sequences | 468 | | Two Interacting Gene Regulatory Proteins That
Repress Each Other's Synthesis Produce a Stable
"Memory" in a Bacterial Cell | 442 | The Evolution of Globins Shows How Random DNA
Duplications Contribute to the Evolution of
Organisms | 470 | | Gene Regulatory Proteins That Act on Many Genes
Simultaneously Are Probably Used in Combinations to | | Recombination Events Also Create New Types of | | | Generate Different Tissues in Eucaryotes | 443 | Protein Chains by Joining Coding Domains Short, Interspersed Repeated Sequences Are Common | 471 | | In Principle, Many Different Cell Types Can Be | | in Eucaryotic Genomes | 472 | | Efficiently Specified by Combinations of a Few Gene
Regulatory Proteins | 444 | The Concept of "Selfish" DNA | 472 | | Input from Several Different Gene Regulatory Proteins May Be Needed to Turn On a Single Gene | 445 | Cataclysmic Changes in Genomes Can Increase
Biological Diversity | 473 | | In Bacteria, DNA Supercoiling Facilitates the | | Summary | 475 | | Transcription of Genes | 446 | References | 47C | | CHAPTER | (0) | Chemiosmotic Mechanisms Represent a Common
Theme Among the Diversity of Bacteria | 50 | |---|------------|--|----------| | Energy Conversion: | TJ. | Summary | 51 | | Mitochondria and Chloroplasts | • | The Chloroplast | 510 | | The Mitochondrion | 484 | Chloroplasts Have an Extra Compartment but Still
Resemble Mitochondria | 51 | | The Mitochondrion Contains an Outer Membrane, an Inner Membrane, and Two Interna! Compartments The Inner Membrane Is Folded into Cristae | 485
486 | Two Unique Reactions Occur in Chloroplasts: The Light-driven Production of ATP and NADPH and the | | | Mitochondrial Oxidation Begins When Large Amounts of Acetyl CoA Are Produced in the Matrix Space from Pyruvate and from Fatty Acids | 488 | Conversion of CO ₂ to Carbohydrate Carbon Fixation Is Catalyzed by Bibulose Bisphosphate Carboxylase, the World's Most Abundant Enzyme | 51
51 | | The Citric Acid Cycle Oxidizes the Acetyl Group on
Acetyl CoA to Generate NADH and FADH ₂ for the
Respiratory Chain | 490 | In the Carbon-Fixation Cycle, Three Molecules of ATP and Two Molecules of NADPH Are Consumed for Each CO ₂ Molecule Fixed | 51 | | On the Inner Mitochondrial Membrane, a
Chemiosmotic Process Converts Oxidation Energy
into ATP | 490 | In Tropical Plants, Carbon Fixation Is Compartmentalized to Facilitate Growth at Low CO ₂ Concentrations | 51 | | The Respiratory Chain Transfers Electrons from NADH to Oxygen | 493 | Light Energy Captured by Chlorophyll Is Used to
Produce a Strong Electron Donor from a Weak One | 51 | | Energy Released by the Passage of Electrons Along
the Respiratory Chain Is Stored as an Electrochemical
Proton Gradient Across the Inner Membrane | 495 | Noncyclic Photophosphorylation Produces Both
NADPH and ATP | 51 | | The Energy Stored in the Electrochemical Proton Gradient Across the Inner Membrane Is Harnessed to | 433 | Chloroplasts Can Make ATP by Cyclic
Photophosphorylation Without Making NADPH | 51 | | Produce ATP and to Transport Metabolites into the
Matrix Space | 496 | The Geometry of Proton Translocation Is Similar in
Mitochondria and Chloroplasts | 52 | | The Rapid Conversion of ADP to ATP in Mitochondria
Keeps the ATP Pool in the Cytoplasm Highly Charged | 498 | Like the Inner Mitochondrial Membrane, the Inner
Chloroplast Membrane Contains Carrier Proteins to
Facilitate Metabolite Exchange with the Cytosol | 52 | | The Difference Between ΔG° and ΔG : A Large Negative Value of ΔG Is Required for ATP Hydrolysis to Be | | Chloroplasts Also Carry Out Other Biosynthesis | 52 | | Useful to the Cell | 498 | Summary | 52 | | Cellular Respiration Is Remarkably Efficient Summary | 499
500 | The Evolution of Electron-Transport | | | • | | Chains | 522 | | The Respiratory Chain Functional Inside-Out Particles Can Be Isolated from Mitochondria | 500 | The Earliest Cells Produced ATP by Fermentation Processes The Evolution of Exercise conserving Floring | 52 | | ATP Synthetase Can Be Purified and Added Back to
Membranes in an Active Form | 500
501 | The Evolution of Energy-conserving Electron-
Transport Chains Enabled Anaerobic Bacteria to Use
Nonfermentable Organic Compounds as a Source of | | | ATP Synthetase Can Function in Reverse to Hydrolyze ATP and Pump H * | 502 | Energy By Providing an Inexhaustible Source of Reducing | 52 | | The Respiratory Chain Can Be Shown to Pump H ⁺
Across the Inner Mitochondrial Membrane | 503 | Power, Photosynthetic Bacteria Overcame a Major
Crisis in the Evolution of Cells
Summary | 52
52 | | The Respiratory Chain Contains Large Enzyme
Complexes Embedded in the Inner Membrane | 504 | The Biogenesis of Mitochondria and | 34 | | Electron Transfers Are Mediated by Random
Collisions in the Bilayer Between Diffusing Donors
and Acceptors | 505 | Chloroplasts Mitochondria and Chloroplasts Contain Separate Genetic Systems That Are Required for Their | 528 | | A Large Drop in Redox Potential Across Each of the
Three Respiratory Enzyme Complexes Provides the
Energy Needed to Pump Protons | 506 | Replication As a Cell Grows, the Number of Mitochondria and
 52 | | The Mechanisms of Respiratory Proton Pumping Are Not Well Understood | 507 | Chloroplasts It Contains Is Increased by Organelle Division Most Conomic of Mitochandria and Chloroplasts Are | 52: | | H ⁺ Ionophores Dissipate the H ⁻ Gradient and Thereby
Uncouple Electron Transport from ATP Synthesis | | Most Genomes of Mitochondria and Chloroplasts Are
Relatively Small, Circular DNA Molecules Mitochondria and Chloroplasts Contain Counsilets | 53 | | Respiratory Control Normally Restrains the Electron
Flow Through the Chain | 508 | Mitochondria and Chloroplasts Contain Complete Genetic Systems Vegets Have Many Advantages for the Stady of | 532 | | Natural Uncouplers Convert the Mitochondria in | | Yeasts Have Many Advantages for the Study of
Mitochondrial Biogenesis, Including the Availability of | | 509 Genetic Analysis Brown Fat into Heat-generating Machines | In Mammals, Mitochondrial Genes Are Maternally
Inherited | 533 | The Core of a Cilium Contains a Bundle of Parallel
Microtubules in a "9 + 2" Arrangement | 562 | |---|---|---|---| | Petite Mutants in Yeast Demonstrate the | | Microtubules Are Hollow Tubes Formed from Tubulin | 563 | | Overwhelming Importance of the Cell Nucleus in
Mitochondrial Biogenesis | 534 | The Ciliary Axoneme Contains Links, Spokes, and Sidearms Made of Protein | 563 | | A Large Fraction of the DNA in Yeast Mitochondria Is
Noncoding | 535 | The Axoneme Moves by a Sliding Microtubule
Mechanism | 566 | | The Complete Nucleotide Sequence of the Human | | Dynein Is Responsible for the Sliding | 567 | | Mitochondrial Genome Is Known, and It Has Some
Surprising Features | 536 | Cilia Can Be Dissected Genetically | 567 | | Chloroplasts Have a More Complex Genome Than
Yeast and Animal Mitochondria | 537 | The Conversion of Microtubule Sliding to Ciliary
Bending Depends on the Inner Sheath | 569 | | The RNA Transcripts Made on Mitochondrial DNA | | Summary | 569 | | Are Extensively Processed After Their Synthesis Proteins Are Imported into Mitochondria and | 537 | General Features of Microtubules and | | | Chloroplasts by an Energy-requiring Process | 538 | Actin Filaments as Dynamic Assemblies | 569 | | Chloroplasts Make Most of Their Own Lipids, While
Mitochondria Rely Mainly on Import | 540 | Microtubules Are Highly Labile Structures That Are
Sensitive to Specific Antimitotic Drugs | 570 | | The Biosynthesis of Mitochondria and Chloroplasts Is
Largely Controlled by the Nucleus | 540 | Actin Filaments Are Continually Formed and Broken
Down in Cells | 571 | | How Can Drugs That Inhibit Mitochondrial Protein
Synthesis Be Used as Antibiotics Without Harming the | | Specific Drugs Change the State of Actin
Polymerization and Thereby Affect Cell Behavior | 572 | | Patient? Mitochondria and Chloroplasts Have Probably Evolved | 540 | The Polymerization of Actin and Tubulin Can Be
Studied in Vitro | 573 | | from Endosymbiotic Bacteria | 541 | Actin Filaments and Microtubules Are Polar
Structures That Grow at Different Rates from Their | | | Why Do Mitochondria and Chloroplasts Have Their Own Genetic Systems? | 542 | Two Ends | 574 | | Summary | 543 | Actin and Tubulin Polymers Can Undergo a
"Treadmilling" of Subunits | FRE | | References | 544 | Summary | 576
577 | | | | ¥ | ٠,, | | CHAPTER | <u> </u> | Microtubula Ouganising Contact | | | CHAPTER | \bigcap | Microtubule Organizing Centers and Microtubule-associated Proteins | 578 | | The Cytoskeleton | | Microtubule-associated Proteins | 578 | | The Cytoskeleton | 550 | | 578
578 | | The Cytoskeleton Muscle Contraction | 550 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers | | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell | 550 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical | 578
578 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of | 550 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible | 578
578
579 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments | 550
550 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical | 578
578 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other | 550
550
551 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication | 578
578
579
580 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments | 550
550
551
553 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary | 578
578
579
580
581 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skelctal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin | 550
550
551 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding | 578
578
579
580
581 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin | 550
550
551
553
553 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells | 578
578
579
580
581
581 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction | 550
550
551
553
553
554 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary
Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments | 578
578
579
580
581 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase | 550
550
551
553
553
554
555 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells | 578
578
579
580
581
581 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skelctal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments | 550
550
551
553
553
554
555 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells | 578
578
579
580
581
581
582 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments Myosin Heads "Walk" Along Actin Filaments Actin and Myosin Are Held in Position in the | 550
551
553
553
554
555
555
556 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells Nonmuscle Cells Contain Small "Musclelike" Assemblies | 578
578
579
580
581
581
582
582 | | Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments Myosin Heads "Walk" Along Actin Filaments Actin and Myosin Are Held in Position in the Myofibril by Other Proteins Muscle Contraction Is Initiated by a Rise in | 550
551
553
553
554
555
555
556 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells Nonmuscle Cells Contain Small "Musclelike" Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent | 578
578
579
580
581
581
582
582
583 | | Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments Myosin Heads "Walk" Along Actin Filaments Actin and Myosin Are Held in Position in the Myofibril by Other Proteins Muscle Contraction Is Initiated by a Rise in Intracellular Ca ²⁺ Troponin and Tropomyosin Mediate the Ca ²⁺ | 550
550
551
553
554
555
555
556
558 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells Nonmuscle Cells Contain Small "Musclelike" Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent Actin Filaments Are Often Anchored in Cell Membranes | 578
578
579
580
581
581
582
582
583
584 | | The Cytoskeleton Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments Myosin Heads "Walk" Along Actin Filaments Actin and Myosin Are Held in Position in the Myofibril by Other Proteins Muscle Contraction Is Initiated by a Rise in Intracellular Ca ²⁺ Troponin and Tropomyosin Mediate the Ca ²⁺ Regulation of Muscle Contraction Smooth Muscle Myosin Is Activated by | 550
551
553
553
554
555
555
556
558
558 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells Nonmuscle Cells Contain Small "Musclelike" Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent Actin Filaments Are Often Anchored in Cell Membranes Amoeboid and Fibroblast Locomotion Depend on | 578
579
580
581
581
582
582
583
584
586
587 | | Muscle Contraction A Myofibril Is the Contractile Element of a Skeletal Muscle Cell Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments Contraction Occurs as Filaments Slide Past Each Other Thin Filaments Consist Principally of Actin Thick Filaments Are Composed Principally of Myosin ATP Hydrolysis Drives Muscle Contraction Myosin is an Actin-activated ATPase Myosin Heads Bind to Actin Filaments Myosin Heads "Walk" Along Actin Filaments Actin and Myosin Are Held in Position in the Myofibril by Other Proteins Muscle Contraction Is Initiated by a Rise in Intracellular Ca ²⁺ Troponin and Tropomyosin Mediate the Ca ²⁺ Regulation of Muscle Contraction Smooth Muscle Myosin Is Activated by Ca ²⁺ -dependent Phosphorylation | 550
550
551
553
554
555
555
556
558
558
559 | Microtubule-associated Proteins Cytoplasmic Microtubules Are Associated with Other Proteins Microtubules Grow from Discrete Organizing Centers Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible Centrioles Usually Arise by Duplication What Is the Function of Centrioles? Summary Actin Filaments and Actin-binding Proteins in Nonmuscle Cells Microvilli Contain Bundles of Actin Filaments Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound Dynamic Actin-Filament Structures Occur on the Surface of Many Cells Nonmuscle Cells Contain Small "Musclelike" Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent Actin Filaments Are Often Anchored in Cell Membranes | 578
578
579
580
581
581
582
582
583
584
586 | | Cross-linking Proteins Can Produce an Actin Gel | 590 | Tumor Viruses as Tools for Studying the | 00.1 |
--|--|---|--| | Fragmenting Proteins Can Produce a Ca ²⁺ -dependent | 500 | Control of the Cell Cycle | 621 | | Liquefaction of Actin Gels The Contraction of Cytoplasmic Gels Is Mediated by | 590 | Oncogenes Are Identified Through the Methods of
Molecular Genetics | 623 | | Myosin | 591 | The Oncogenes of RNA Tumor Viruses Are the Best | | | Summary | 591 | Understood | 625 | | Intermediate Filaments | 593 | Oncogenes Frequently Code for Protein Kinases | 626 | | Intermediate Filaments Consist of Fibrous Polypeptides That Vary Greatly in Size | 593 | Increased Levels of a Normal Cellular Protein Can
Destroy Normal Cell Growth Regulation | 627 | | Disassembly of Intermediate Filaments May Require | | Active Oncogenes Have Been Isolated Directly from | can | | Filament Destruction | 594 | Human Tumors Summary | 628
628 | | Different Cell Types Contain Intermediate Filaments of Distinct Composition | 594 | Events in the S Phase | 629 | | Keratin Filaments Strengthen Epithelial Cell Sheets | 595 | During the S Phase, Clusters of Replication Forks | | | Do Intermediate Filaments Have Nonstructural | | Become Simultaneously Active on Each Chromosome | 630 | | Functions? | 596 | New Histones Are Assembled into Chromatin as DNA | | | Summary | 596 | Replicates | 632 | | Organization of the Cytoskeleton | 597 | The Orientation of Replication Origins Relative to
Genes May Have Important Biological Consequences | 635 | | The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope | 597 | Different Genetic Regions on the Same Chromosome
Replicate at Distinct Times During the S Phase | 635 | | Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton | 599 | Replication Times During the S Phase Are Correlated with Interphase Chromatin Structure | 637 | | Extensive Changes in the Cytoskeleton Are Produced | 808 | How Is the Timing of DNA Replication Controlled? | 638 | | by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the | 600 | Chromatin-bound Factors Ensure That Each Region of the DNA Is Replicated Only Once During Each S | | | Cytoskeleton | 600 | Phase | 638 | | The Cytoskeleton Enables Cells to Respond to the
Physical Nature of a Solid Surface | 602 | Summary | 639 | | Fittsical Nature of a condition | | | | | · | | The Logic of the Cycle | 640 | | Cytoskeleton Organization Can Be Passed from a
Parent Cell to Its Daughters | 602 | The Logic of the Cycle Most Proteins Are Synthesized Continuously Theoryteent Intersperse | | | Cytoskeleton Organization Can Be Passed from a | 602
603 | Most Proteins Are Synthesized Continuously
Throughout Interphase
The Cell Cycle Proceeds by an Obligatory Series of | 640 | | Cytoskeleton Organization Can Be Passed from a
Parent Cell to Its Daughters
Cytoskeletal Organization Can Be Transmitted Across | | Most Proteins Are Synthesized Continuously
Throughout Interphase
The Cell Cycle Proceeds by an Obligatory Series of
Sequential Reactions | | | Cytoskeleton Organization Can Be Passed from a
Parent Cell to Its Daughters
Cytoskeletal Organization Can Be Transmitted Across
Cell Membranes
How Do Cells Move?
Summary | 603
604
605 | Most Proteins Are Synthesized Continuously
Throughout Interphase
The Cell Cycle Proceeds by an Obligatory Series of | 640 | | Cytoskeleton Organization Can Be Passed from a
Parent Cell to Its Daughters
Cytoskeletal Organization Can Be Transmitted Across
Cell Membranes
How Do Cells Move? | 603
604 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis | 640
641 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When | 640
641
642
644 | | Cytoskeleton Organization Can Be Passed from a
Parent Cell to Its Daughters
Cytoskeletal Organization Can Be Transmitted Across
Cell Membranes
How Do Cells Move?
Summary | 603
604
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis | 640
641
642
644 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary | 640
641
642
644
645 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis | 640
641
642
644 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER CHAPTER | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages | 640
641
642
644
645 | | Cytoskeleton Organization Can Be
Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER Cell Growth and Division The Control of Cell Division | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic | 640
641
642
644
645
646 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER Cell Growth and Division The Control of Cell Division The Cells in a Multicellular Organism Divide at Very | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not | 640
641
642
644
645
646 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER Cell Growth and Division The Control of Cell Division The Cells in a Multicellular Organism Divide at Very Different Rates Differences in Cell-Cycle Times Are Due Mainly to | 603
604
605
605 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic | 640
641
642
644
645
646 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER CHAPTER CHAPTER CHAPTER CHAPTER The Control of Cell Division The Cells in a Multicellular Organism Divide at Very Different Rates Differences in Cell-Cycle Times Are Due Mainly to Variations in the Length of G1 | 603
604
605
605
611
612 | Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled | 640
641
642
644
645
646
646 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER CHAPTER CHAPTER CHAPTER CHAPTER CHAPTER Differences in A Multicellular Organism Divide at Very Different Rates Differences in Cell-Cycle Times Are Due Mainly to Variations in the Length of G ₁ Determination of Cell-Cycle Times | 603
604
605
605
611
612
613 | Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles | 640
641
642
644
645
646
646 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER CHAPTER CHAPTER CHAPTER CHAPTER The Control of Cell Division The Cells in a Multicellular Organism Divide at Very Different Rates Differences in Cell-Cycle Times Are Due Mainly to Variations in the Length of G1 | 603
604
605
605
601
612
613
613 | Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to | 640
641
642
644
648
646
647
647 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER C | 603
604
605
605
611
612
613
613
617 | The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules | 640
641
642
644
645
646
647 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER C | 603
604
605
605
611
612
613
613
617 | The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules The Chromosome Alignment at Metaphase Is | 640
641
642
644
648
646
647
647 | | Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER C | 603
604
605
605
605
611
612
613
613
617
618 | The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules | 640
641
642
644
648
646
647
647 | | Cytoskeletan Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move? Summary References CHAPTER C | 603
604
605
605
605
611
612
613
613
617
618 | The Cell Cycle Proceeds by
an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G2 Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules The Chromosome Alignment at Metaphase Is Generated by Interactions Between the Kinetochore | 640
641
642
644
648
646
647
652 | Summary | The Sister Chromatids Separate Suddenly at | | The Extracellular Matrix | 692 | |---|-----|--|----------| | Anaphase At Anaphase the Chromosomes Are Pulled Toward | 655 | The Extracellular Matrix Consists Primarily of Fibrous
Proteins Embedded in a Hydrated Polysaccharide Gel | 692 | | the Poles and the Two Poles Are Pushed Apart A Dyneinlike ATPase Is Thought to Generate the | 655 | Collagen Is the Major Protein of the Extracellular
Matrix | 693 | | Force That Pushes the Poles Apart in Anaphase, But a Different Mechanism Seems to Move the Chromosomes to the Poles | 658 | Collagen Chains Have an Unusual Amino Acid
Composition | 696 | | At Telophase the Nuclear Envelope Initially Re-forms
Around Individual Chromosomes | 659 | During Secretion, Procollagen Molecules Are Cleaved
to Form Collagen Molecules, Which Self-assemble into
Fibrils | 697 | | The Mitotic Spindle Determines the Site of
Cytoplasmic Cleavage During Cytokinesis | 660 | Once Formed, Collagen Fibrils Are Greatly
Strengthened by Covalent Cross-linking | 699 | | Actin and Myosin Generate the Forces for Cleavage | 662 | Elastin Is a Cross-linked, Random-Coil Protein That | (,,,,, | | Cytokinesis Occurs by a Completely Different
Mechanism in Plant Cells with Cell Walls | 663 | Gives Tissues Their Elasticity | 701 | | Cytokinesis Must Allow the Cytoplasmic Organelles to
Be Faithfully Inherited | 666 | Proteoglycans and Hyaluronic Acid Are Major
Constituents of the Extracellular Matrix | 702 | | The Elaborate Mitotic Process of Higher Organisms Evolved Gradually from the Procaryotic Fission | 000 | Glycosaminoglycan Chains Occupy Vast Amounts of
Space and Form Hydrated Gels | 705 | | Mechanisms | 666 | Glycosaminoglycan Chains May Be Highly Organized in the Extracellular Matrix | 705 | | Summary References | 668 | Fibronectin Is an Extracellular-Matrix Glycoprotein That Promotes Cell Adhesion | 707 | | Title Chices | 668 | The Basal Lamina Is a Specialized Extracellular Matrix
That Contains a Unique Type of Collagen | 709 | | | | Basal Laminae Perform Diverse and Complex Functions | 711 | | Cell-Cell Adhesion and the | 2 | Intracellular Actin Filament Bundles Direct the
Organization of Matrix Macromolecules on Cell Surfaces
and Thereby Organize the Extracellular Matrix | 711 | | Extracellular Matrix | .[] | In Reciprocal Fashion, an Ordered Extracellular
Matrix Influences the Organization and Behavior of
the Cells It Contains | 712 | | Intercellular Recognition and
Cell Adhesion | 674 | Summary | 713 | | Myxobacteria Exploit the Advantages of Social
Behavior | 674 | References | 713 | | The Assembly of Slime Mold Amoebac into a
Multicellular Slug Involves Chemotaxis and Specific
Cell Adhesion | 676 | Chemical Signaling | <u> </u> | | Species-specific Cell Aggregation in Sponges Is
Mediated by a Large Extracellular Aggregation Factor | 679 | Between Cells | W) | | Dissociated Embryonic Vertebrate Cells Preferentially Associate with Cells of the Same Tissue | 680 | Three Different Strategies of Chemical Signaling: Local Chemical Mediators, | | | Cells from Different Tissues Display a Hierarchy of Adhesiveness | 681 | Hormones, and Neurotransmitters | 718 | | Summary | 682 | The Hypothalamus Is the Main Regulator of the
Endocrine System | 719 | | Cell Junctions | 682 | Different Cells Respond in Different Ways to the Same | 719 | | Desmosomes Anchor Cells Together | 683 | Chemical Signal | 719 | | Tight Junctions Form a Permeability Barrier Across
Cell Sheets | 684 | Some Cellular Responses to Chemical Signals Are
Rapid and Transient, While Others Are Slow and | | | Gap Junctions Allow Small Molecules to Pass Directly from Cell to Cell | 686 | Long-lasting Signaling Molecules Can Be Either Water-soluble or | 723 | | Why Are So Many Cells Electrically and Metabolically Coupled via Gap Junctions? | 688 | Lipid-soluble Local Chemical Mediators Are Bapidly Destroyed After They Are Secreted | 724 | | Most Cells in Early Embryos Are Ionically Coupled | 689 | Some Signaling Molecules Released by Nerve | 724 | | Cells May Control the Permeability of Their Gap
Junctions | 689 | Terminals Probably Act as Local Chemical Mediators
Bather Than as Neurotransmitters | 726 | | Gap Junctions Are Composed of Channels That
Directly Connect the Interiors of the Interacting Cells | 690 | Some Hormones and Local Chemical Mediators Act as
Specific Growth Factors | 727 | 692 Summary | | | List of Topics | xxi | |--|------------|--|------------| | Signaling Mediated by Intracellular
Receptors: Mechanisms of Steroid | | Cyclic AMP Also Regulates the Dephosphorylation of
Cellular Proteins | 745 | | Hormone Action | 729 | Phosphorylase Kinase Illustrates How an Enzyme Can | | | Steroid-Hormone-Receptor Complexes Bind to
Chromatin and Regulate the Transcription of Specific | | Be Activated Only Transiently by an Extracellular
Chemical Signal | 746 | | Genes | 730 | The Reversible Covalent Modification of Proteins | 747 | | Steroid Hormones Often Induce Both Primary and
Secondary Responses | 731 | Regulates a Large Number of Cellular Processes Ca ²⁺ Alters the Conformation of Intracellular | 748 | | Steroid Hormones Regulate Different Genes in | =0.4 | Ca ²⁺ -binding Proteins | (40 | | Different Target Cells | 731
733 | Does Cyclic GMP Act as an Intracellular Second Messenger? | 749 | | Signaling Mediated by Cell-Surface | 733 | Extracellular Signals Are Amplified Enormously by the Use of Second Messengers and Enzymatic Cascades | 749 | | Receptors: Cyclic AMP and Calcium Ions as Second Messengers | 733 | The Concentration of a Molecule Can Change Quickly
If It Is Continuously Degraded or Removed at a Rapid | | | The Use of Labeled Ligands Revolutionized the Study | | Rate | 750 | | of Cell-Surface Receptors | 733 | Cells Can Respond Gradually or Suddenly to Signals | 751 | | Protein Hormones and Growth Factors Are Ingested
by Receptor-mediated Endocytosis | 734 | Summary | 753 | | Cell-Surface Receptors Act as Transducers by | ,,, | Target Cell Adaptation | 754 | | Regulating Enzymes or Ion Channels in the Plasma Membrane | 735 | Some Cells Become Desensitized by Endocytosing
Their Surface Receptors | 754 | | Cyclic AMP Is a Ubiquitous Intracellular Mediator | 736 | Some Cell-Surface Receptors Are Reversibly | | | Receptor and Adenylate Cyclase Molecules Are
Separate Proteins that Functionally Interact in the
Plasma Membrane | 737 | Inactivated by Prolonged Ligand Binding Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation | 754
755 | | Receptors Activate Adenylate Cyclase Molecules Indirectly Through a GTP-binding Protein | 738 | Chemical Signaling in Unicellular Organisms Provides
Useful Models for Study | 756 | | Ca ²⁺ Also Functions as a Ubiquitous Intracellular
Mediator | 739 | Bacterial Chemotaxis Is a Simple Kind of Intelligent
Behavior | 757 | | The Activation of Some Cell-Surface Receptors Opens | 742 | Chemotaxis-deficient Mutants Have Revealed Four
Classes of Proteins Involved in Bacterial Chemotaxis | 759 | 742 743 743 Summary References Protein Methylation Is Responsible for Adaptation A Model for Bacterial Chemotaxis ## From Cells to Multicellular Organisms Membrane-bound Ca2+ Channels The Mode of Action of Cyclic AMP and Cyclic AMP Activates Intracellular Protein Kinases **Calcium Ions as Second Messengers** Summary 760 761 763 | | Sexual Reproduction Gives a Competitive Advantage
to Organisms in an Unpredictably Variable Environment | 771 | |------------|--|--| | <u>53</u> | Sexual Reproduction Helps Establish Favorable Alleles
in a Large Population | 771 | | | New Genes Evolve by Duplication and Divergence | 773 | | 769 | Sexual Reproduction Keeps a Diploid Species Diploid | 773 | | 770 | A Diploid Species Has a Spare Copy of Each Gene
Free to Mutate to Serve a New Function | 773 | | | | to Organisms in an Unpredictably Variable Environment Sexual Reproduction Helps Establish Favorable Alleles in a Large Population New Genes Evolve by Duplication and Divergence Sexual Reproduction Keeps a Diploid Species
Diploid A Diploid Species Has a Spare Copy of Each Gene | | A Diploid Species Can Rapidly Enrich Its Genome by
the Addition of New Genes | 775 | CHAPTER 1 | 区 | |--|------------|--|------------| | Summary | 776 | Cellular Mechanisms of | ā)) | | • | | Development | <u> </u> | | Meiosis | 776 | Clearings and Plantide Formation | 814 | | Mciosis Involves Two Nuclear Divisions Rather Than
One | 778 | Cleavage and Blastula Formation Cleavage Produces Many Cells from One | 814 | | Genetic Reassortment Is Enhanced by Crossing Over
Between Homologous Nonsister Chromatids | 778 | The Polarity of the Embryo Depends on the Polarity of the Egg | 815 | | A Synaptonemal Complex Mediates Chromosome
Pairing | 779 | The Blastula Consists of an Epithelium Surrounding a | | | Recombination Nodules Are Thought to Mediate the Chromatid Exchanges | 786 | Cavity
Summary | 815
816 | | Chiasmata Play an Important Part in Chromosome
Segregation in Meiosis | 786 | Gastrulation, Neurulation, and Somite
Formation | 816 | | Pairing of the Sex Chromosomes Ensures That They Also Segregate | 787 | Gastrulation Transforms a Hollow Ball of Cells into a | | | Meiotic Division II Resembles a Normal Mitosis | 787 | Three-layered Structure The Ability of Colle to Extend Adhere and Contract Is | 816 | | Summary | 788 | The Ability of Cells to Extend, Adhere, and Contract Is
the Universal Basis of Morphogenetic Movement | 818 | | | =00 | Gastrulation in Amphibians | 819 | | Gametes | 788 | Movements Are Organized About the Blastopore | 820 | | An Egg Is the Only Cell in a Higher Animal Able to
Develop into a New Individual | 788 | The Endoderm Will Form the Gut and Associated
Organs Such as the Lungs and Liver | 821 | | Eggs are Highly Specialized Cells with Unique
Features | 789 | The Mesoderm Will Form Connective Tissues,
Muscles, and the Vascular and Urogenital Systems | 821 | | Eggs Develop in Stages | 790 | The Ectoderm Will Form the Epidermis and the | 000 | | Many Eggs Grow to Their Large Size Through Special
Mechanisms | 791 | Nervous System The Neural Tube Is Formed Through Coordinated | 822 | | Hormones Induce Egg Maturation and Ovulation | 793 | Changes in Cell Shape | 822 | | Oogenesis Is Wasteful | 795 | Blocks of Mesoderm Cells Uncouple to Form Somites
on Either Side of the Body Axis | 823 | | Sperm Are Highly Adapted for Delivering Their DNA to an Egg | 796 | The Vertebrate Body Plan Is First Formed in | .0.00 | | Sperm Are Produced Continuously in Many Mammals | 797 | Miniature and Then Maintained as the Embryo Grows | 824 | | Sperm Nuclei Arc Haploid, But Sperm Cell | | Summary | 824 | | Differentiation Is Directed by the Diploid Genome | 797 | Early Steps in Pattern Formation: | | | Summary | 800 | The Mouse | 825 | | Fertilization | 801 | Mammalian Development Involves an Added
Complication | 826 | | A Sperm Must Be Activated Before It Can Fertilize an | | The Steps Before Gastrulation | 826 | | Egg | 801 | Organogenesis and Growth Before Birth | 828 | | Sperm-Egg Adhesion Is Mediated by Species-specific Proteins | 803 | Studies of Chimeras Show That All of the Cells of the
Very Early Mammalian Embryo Are Functionally | | | Egg Activation Is Mediated by Changes in Intracellular Ion Concentrations | 804 | Equivalent | 828 | | The Rapid Depolarization of the Egg Membrane | | Position in the Morula Determines the Fate of a Cell | 830 | | Prevents Further Sperm-Egg Fusions, Thereby
Mediating the Fast Block to Polyspermy | 805 | A Group of Founder Cells, Rather Than a Single
Founder Cell, Gives Rise to a Particular Tissue or | | | The Cortical Reaction Is Responsible for the Late
Block to Polyspermy | 806 | Organ Teratomas Can Arise From Embryos That Develop in | 830 | | An Increase in Intracellular Free Ca ²⁺ Initiates Egg | | the Wrong Environment | 831 | | Development A Rise in the Intracellular pH in Some Organisms | 807 | Cells from Teratocarcinomas Can Cooperate with
Normal Cells in a Chimera to Make a Normal Mouse | 832 | | Induces the Late Synthetic Events of Egg Activation | 808 | Summary | 832 | | Mammalian Eggs Can Be Fertilized in Vitro | 808 | Determination and Differentiation | 832 | | Summary | 809 | In Higher Eucaryotes, the Behavior of a Cell Depends | | | References | 811 | on Its History as well as on Its Environment and Its Genome | 834 | | Cells Often Become Determined for a Future
Specialized Role Long Before They Differentiate
Overtly | 834 | Positional Information Along the Antero-Posterior Axis
May Be Supplied by Gradations in the Magnitude of a
Signal from the Polarizing-Region Cells | 858 | |--|--|---|---| | The Time of Cell Determination Can Be Discovered by Transplantation Experiments | 835 | The Polarizing Region of a Mammal or a Reptile Is
Effective in the Chick Also | 860 | | The Genetic Control of Development Is Best Studied in <i>Drosophila</i> | 836 | The Parts of the Limb Are Laid Down in Succession
Along the Proximo-Distal Axis | 860 | | The State of Determination of Imaginal Disc Cells Is
Heritable | 838 | The Apical Ectodermal Ridge Delimits the Special
Region of Mesenchyme from Which Successive Distal | | | Groups of Cells Occasionally Transdetermine | 838 | Parts Develop, But It Does Not Instruct the
Mesenchyme as to Which Parts It Should Form | 860 | | Homoeotic Mutants Reveal Genes Whose Activities
Control Cell Determination | 840 | Positional Specification Along the Proximo-Distal Axis Depends on the Amount of Time Spent in the | 000 | | The Bithorax Complex Controls Differences Between
Thoracic and Abdominal Segments | 841 | Progress Zone Neighboring Mesenchyme Cells in Early Chick Limb | 861 | | The Larval Body Is Constructed by Modulation of a Fundamental Pattern of Repeating Segments | 842 | Buds May Interact so as to Smooth Out Discontinuities in the Pattern of Positional Values | 863 | | Mitotic Recombination Can Be Exploited to Produce
Marked Mutant Clones of Cells | 842 | Some Limbs Can Regenerate | 864 | | Sharp Demarcation Lines Separate Polyclonal | | Cockroach Legs Undergo Intercalary Regeneration | 864 | | Compartments | 844 | The Same Pattern of Positional Values Is Repeated in Successive Segments of the Cockroach Leg | 866 | | Different Scts of Genes Are Active in the Cells of
Different Compartments | 846 | Circumferential Intercalation Obeys the Same Rule as
Proximo-Distal Intercalation | 866 | | The State of Determination Is Built Up
Combinatorially | 846 | Intercalation in the Epidermis Is a Two-dimensional Problem | 867 | | The Extent of Cell Proliferation in <i>Drosophila</i> Is Not
Determined by Counting Cell Divisions: Fast-growing
Clones May Nearly Fill Their Compartment But Do | | Regeneration of a Two-dimensional Patch Obeys the Rule of Intercalation | 868 | | Not Make It Big Cell Determination in Vertebrates Resembles Cell | 847 | The Rule of Intercalation May Apply to Many
Different Systems | 869 | | Determination in <i>Drosophila</i> | 848 | Summary | 869 | | | | | | | Summary | 848 | Inductive Interactions in the | | | | 848
849 | Inductive Interactions in the Development of Epithelia | 870 | | Summary Patterns in Space Cells Are Assigned Different Characters According to Their Positions | | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube | 870 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in | 849 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis | | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized | 849
849
850 | Development of Epithelia
Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the | 870 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the <i>Drosophila</i> Egg | 849
849
850 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the | 870
870 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the <i>Drosophila</i> Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in | 849
849
850 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied | 870
870
872 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the <i>Drosophila</i> Egg Cell Character Is Controlled by Spatial Cues | 849
849
850
850
851 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary | 870
870
872
872 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population | 849
849
850
850
851
852 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm | 870
870
872
872 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional | 849
850
850
851
852
852 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and | 870
870
872
872
8 73 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information | 849
849
850
850
851
852 | Development of Epithelia Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple | 870
870
872
872
8 73 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret | 849
850
850
851
852
852 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied | 870
870
872
872
873
873
874
875 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently Since Embryonic Fields Are Small, Gross Features of | 849
849
850
850
851
852
852
853 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the | 870
870
872
872
873
873
874 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently | 849
849
850
850
851
852
852 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied by Laser Microsurgery | 870
870
872
872
873
873
874
875 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently Since Embryonic Fields Are Small, Gross Features of the Adult Must Be Determined Early | 849 849 850 850 851 852 853 854 855 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of
Cells During Development Can Be Studied by Laser Microsurgery An "Anchor Cell" Controls Vulva Development A "Distal Tip Cell" Causes Continued Proliferation of Nearby Germ Cells Cell Fate Can Be Controlled by Inhibitory Interactions | 870
870
872
873
873
874
875
876
876 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently Since Embryonic Fields Are Small, Gross Features of the Adult Must Be Determined Early Summary | 849 849 850 850 851 852 853 854 855 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied by Laser Microsurgery An "Anchor Cell" Controls Vulva Development A "Distal Tip Cell" Causes Continued Proliferation of Nearby Germ Cells Cell Fate Can Be Controlled by Inhibitory Interactions Among Cells in an Equivalence Group | 870
870
872
873
873
874
875
876
876
877 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently Since Embryonic Fields Are Small, Gross Features of the Adult Must Be Determined Early Summary Positional Information in Limb Development The Developing Chick Limb Can Be Analyzed in | 849 849 850 850 851 852 853 854 855 856 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied by Laser Microsurgery An "Anchor Cell" Controls Vulva Development A "Distal Tip Cell" Causes Continued Proliferation of Nearby Germ Cells Cell Fate Can Be Controlled by Inhibitory Interactions Among Cells in an Equivalence Group | 870
870
872
873
873
874
875
876
876
877
878 | | Patterns in Space Cells Are Assigned Different Characters According to Their Positions Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg The Determinant of Germ-Cell Character Is Localized at One End of the Drosophila Egg Cell Character Is Controlled by Spatial Cues Sharp Differences of Character Emerge Gradually in an Initially Uniform Population Positional Information Is Refined by Installments Nonequivalence: Cells That Ultimately Differentiate in the Same Way Can Have Different Positional Information Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently Since Embryonic Fields Are Small, Gross Features of the Adult Must Be Determined Early Summary Positional Information in Limb Development | 849 849 850 850 851 852 853 854 855 855 | Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis Epithelium Invades Mesenchyme to Form the Tubules of a Gland Summary Multicellular Development Studied Cell by Cell: The Nematode Worm Caenorhabditis elegans Is Anatomically and Genetically Simple Nematode Development Is Essentially Invariant Cytokinesis Is Not Required for Cell Differentiation The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied by Laser Microsurgery An "Anchor Cell" Controls Vulva Development A "Distal Tip Cell" Causes Continued Proliferation of Nearby Germ Cells Cell Fate Can Be Controlled by Inhibitory Interactions Among Cells in an Equivalence Group | 870
870
872
873
873
874
875
876
876
877 | and to Give Rise to Differentiated Progeny | Germ Cells Leave the Yolk Sac and Settle in the
Genital Ridges | 880 | The Epidermis Is Organized into Proliferative Units | 912 | |--|-----|---|------------| | Muscle Cells in the Chick Limb Originate by | 500 | Differentiating Epidermal Cells Synthesize a Sequence of Different Keratins as They Mature | 914 | | Migration from the Somites Cells Disperse from the Neural Crest and Form Many | 881 | For Each Proliferative Unit, There Is an "Immortal" •
Stem Cell | 915 | | Different Tissues | 881 | Stem Cell Potential May Be Maintained by Contact | 313 | | The Pathways of Migration Are Defined by the Host Connective Tissue | 882 | with the Basal Lamina | 915 | | The Differentiation of Neural Crest Cells Is Decided | | Basal Cell Proliferation Is Regulated According to the
Thickness of the Epidermis | 916 | | by the Local Environment The Development of the Nervous System Poses | 884 | Secretory Cells of the Skin Are Secluded in Glands
and Have Different Population Kinetics | 916 | | Special Problems | 884 | Summary | 918 | | Summary | 885 | Renewal by Pluripotent Stem Cells: | | | References | 885 | Blood Cell Formation | 918 | | CHAPTER 🗾 | 70 | New Blood Cells Are Generated in the Bone Marrow | 921 | | Differentiated Cells and the | (ħ) | Bone Marrow Contains Pluripotent Stem Cells That
Can Establish Hematopoietic Colonies | 923 | | Maintenance of Tissues | | The Number of Specialized Blood Cells Is Amplified by Divisions That Follow Commitment | 924 | | Maintenance of the Differentiated State | 891 | Production of Erythrocytes Is Controlled Through
Hormonal Regulation of the Cell Divisions That | | | Differentiated Cells Commonly Remember Their
Character Even in Isolation: Pigment Epithelium of | | Follow Commitment | 925 | | the Retina | 892 | Specific Glycoprotein Hormones Control the Survival and Fate of the Different Classes of Committed | | | The Extracellular Matrix That a Cell Secretes Helps
Maintain the Cell's Differentiated State | 893 | Hematopoietic Precursor Cells | 927 | | Cell-Cell Interactions Can Modulate the Differentiated | | Summary | 927 | | State | 894 | Quiescent Stem Cells: Skeletal Muscle | 928 | | Some Structures Are Maintained by a Continuing
Interaction Between Their Parts: Taste Buds and | | Skeletal Muscle Cells Do Not Divide | 929 | | Their Nerve Supply | 895 | New Skeletal Muscle Cells Form by Fusion of
Myoblasts | 929 | | An Agent That Causes Changes in DNA Methylation Can
Cause Radical Alterations of Differentiated Character | 896 | Muscle Differentiation Requires Coordinated Changes | | | Summary | 897 | in the Expression of Many Different Genes | 929 | | Tissues With Permanent Cells | 897 | Some Myoblasts Persist as Satellite Cells in the Adult The State of Differentiation of Skeletal Muscle Fibers | 931 | | The Cells at the Center of an Adult Lens Are | | Can Be Modulated by Electrical Stimulation | 931 | | Remnants of the Embryo | 897 | Summary | 933 | | Most Permanent Cells Renew Their Parts:
Photoreceptor Cells of the Retina | 899 | Soft Cells and Tough Matrix: Growth, | | | Summary | 902 | Turnover, and Repair in Skeletal | | | Renewal by Simple Duplication | 902 | Connective Tissue | 933 | | The Liver is an Interface Between the Digestive Traci | 302 | Cartilage Grows by Swelling | 933 | | and the Blood | 903 | Osteoblasts Secrete Bone Matrix While Osteoclasts
Erode It | 934 | | Liver Cell Loss Stimulates Liver Cell Proliferation | 905 | Cartilage Is Eroded by Osteoclasts to Make Way for | | | Regeneration May Be Hindered by Uncoordinated
Growth of the Components of a Mixed Tissue | 906 | Bone
Summary | 937
938 | | Endothelial Cells Constitute the Fundamental
Component of All Blood Vessels | 906 | Territorial Stability in the Adult Body | 938 | | New Endothelial Cells Are Generated by Simple | | Epithelial Organization Helps to Keep Cells in Their
Proper Territories | | | Duplication of Existing Endothelial Cells New Capillaries Form by Sprouting | 908 | Normal Somatic Cells Are Destined to Die for the Sake | 939 | | Growth of the Capillary Network Is Controlled by | 908 | of the Survival of the Germ Cell | 939 | | Factors Released by the Surrounding Tissues | 909 | Cancer Cells Break the Rules of Altruistic Social | | | Summary | 910 | Behavior | 940 | | Renewal by Stem Cells:
Epidermis | 910 | Summary | 941 | | Stem Cells Have the Ability to Divide Without Limit | | Appendix | 941 | 911 References | CHAPTER | 叼 | The L and H Chains Are Folded into Repeating
Domains | 076 | |--|------------|---|------------| | The Immune System | // | X-ray Diffraction Studies Have Revealed the Structure
of Immunoglobulin Domains and Antigen-binding | 976 | | The Cellular Basis of Immunity | 952 | Sites in Three Dimensions | 977 | | The Immune System Is Composed of Billions of
Lymphocytes | 952 | Summary | 979 | | B Lymphocytes Make Humoral Antibody Responses; T
Lymphocytes Make Cell-mediated Immune Responses | 952 | The Generation of Antibody Diversity | 979 | | All Lymphocytes Develop from Pluripotent
Hemopoietic Stem Cells | 954 | More than One Gene Segment Codes for Each L and H Chain | 980 | | Cell-Surface Markers Make It Possible to Distinguish and Separate T and B Cells | 955 | Two Gene Segments Code for the V Region of Each L Chain | 981 | | Most Lymphocytes Continuously Recirculate Between the Blood and Lymph | 956 | Three Gene Segments Code for the V Region of Each II Chain | 983 | | The Immune System Works by Clonal Selection | 956 | Antibody Diversity is increased by Somatic
Recombination, by the Combinatorial Joining of Light | | | Most Antigens Stimulate Many Different Lymphocyte | 958 | and Heavy Chains, and by Somatic Mutation | 983 | | Immunological Memory Is Due to Clonal Expansion and Lymphocyte Differentiation | | The Mechanisms of Antibody Gene Expression Ensure That B Cells Are Monospecific | 984 | | The Failure to Respond to Self Antigens Is Due to Acquired Immunological Tolerance | 959
960 | The Switch from a Membrane-bound to a Secreted
Form of the Same Antibody Occurs Through a
Change in the H-Chain RNA Transcripts | 985 | | Immunological Tolerance to Foreign Antigens Can | | B Cells Can Switch the Class of Antibody They Make | 986 | | Also Be Induced in Mature Animals Sunmary | 962
963 | Idiotypes on Antibody Molecules Form the Basis of an Immunological network | 986 | | | | Summary | 988 | | The Functional Properties of Antibodies | 963 | The Complement System | 000 | | The Antigen-specific Receptors on B Cells Are
Antibody Molecules | 964 | The Complement System Complement Activation Involves a Sequential | 988 | | B Cells Can Be Stimulated to Make Antibodies in a | | Proteolytic Cascade The Classical Pathway Is Activated by Antibody- | 988 | | Culture Dish Antibodies Have Two Identical Antigen-hinding Sites | 964
964 | Antigen Complexes | 989 | | An Antibody Molecule Is Composed of Four
Polypeptide Chains—Two Identical Light Chains and | | The Alternative Pathway Can Be Directly Activated by Microorganisms | 990 | | Two Identical Heavy Chains There Are Five Different Classes of H Chains, Each | 965 | The Assembly of the Late Complement Components
Generates a Transmembrane Lytic Complex | 991 | | with Different Biological Properties
Antibodies Can Have Either κ or λ Light Chains But | 966 | The Complement Cascade Is Tightly Regulated and
Designed to Attack a Nearby Membrane | 992 | | Never Both | 969 | Summary | 993 | | The Strength of an Antibody-Antigen Interaction
Depends on Both the Affinity and the Number of
Binding Sites | 969 | T Lymphocytes and Cell-mediated
Immunity | 993 | | Antibody-Antigen Interactions Can Be Measured in | | The T-Cell-Receptor Enigma | 993 | | Many Ways The Size of the Antigen-Antibody Complexes Formed | 971 | Different T-Cell Responses Arc Mcdiated by Different T-Cell Subpopulations | 994 | | Depends on the Valence of the Antigen and on the | | Cytotoxic T Cells Kill Virus-infected Cells | 995 | | Relative Concentrations of the Antigen and Antibody Antibodies Recruit Complement and Various Cells to | 972 | Helper T Cells Are Required for Most B Cells and T
Cells to Respond to Antigen | 995 | | Fight Infection Summary | 973
974 | Helper T Cells Activate Macrophages by Secreting
Lymphokines | 996 | | The Fine Structure of Antibodies | 974 | Suppressor T Cells Inhibit the Responses of Other Lymphocytes | 997 | | Myeloma Proteins Are Homogeneous Antibodies Made by Plasma-Cell Tumors | 974 | Helper and Suppressor T Cells Can Recognize Foreign
Antigens on the Target Lymphocyte Surface | 997 | | L and H Chains Consist of Constant and Variable
Regions | 975 | Regulatory T Cells May Communicate with Their
Target Lymphocytes by Secreting Soluble Helper or | | | The L and H Chains Each Contain Three
Hypervariable Regions That Together Form the
Antigen-binding Site | 975 | Suppressor Factors Transplantation Reactions Are T-Cell-mediated Immune Responses | 998
999 | | T Cells Appear to be Obsessed with Foreign MHC
Antigens | 999 | Action Potentials Provide for Rapid Long-Distance
Communication | 1030 | |--|--------------|--|------| | There Are Two Classes of MHC Molecules | 1000 | Myelination Speeds Conduction | 1033 | | Class I MHC Glycoproteins Are Found on Virtually All
Nucleated Cells and Are Extremely Polymorphic | 1000 | Summary | 1032 | | The Genes Coding for Class II MHC Glycoproteins Were Originally Discovered as Immune Response (Ir) Genes | 1001 | Synaptic Transmission The Neuromuscular Junction Is the Best Understood Synapse | 1035 | | T Cells Recognize Foreign Antigens in Association with Self MHC Molecules | 1002 | Voltage-gated Ca ²⁺ Channels Couple Action Potentials to Exocytosis | 1036 | | MHC Glycoproteins May Serve as Guides for | | Neurotransmitter Release Is Quantal and Random | 1038 | | Activating the Appropriate Subpopulations of T Cells Helper T Cells May Recognize Fragments of Foreign Antigons on the Surface of Antigon preparting Cells | 1003 | Ligand-gated Channels Convert the Chemical Signal
Back into Electrical Form | 1040 | | Antigens on the Surface of Antigen-presenting Cells Why Are MHC Glycoproteins So Polymorphic? | 1004
1005 | The Acetylcholine Receptor Is a Ligand-gated Cation
Channel | 1040 | | The Immune System Is Ineffective Against Most
Tumors | 1006 | Acetylcholine Is Removed from the Synaptic Cleft by Diffusion and by Hydrolysis | 104 | | The Immune System Has Had to Solve Three Major
Problems in Antigen Recognition | 1006 | Some Synapses Are Excitatory, Others Inhibitory | 1042 | | Summary | 1007 | Neurotransmitters at Some Synapses Act Through
Intracellular Second Messengers Rather Than by
Directly Gated Ion Flows | 1044 | | References | 1008 | Many Synaptic Inputs Combine to Drive a Single
Neuron | 1045 | | The Nervous System | | The Membrane Potential in the Cell Body Represents a Spatial Summation of Postsynaptic Potentials | 1940 | | | | Temporal Summation Translates the Frequency of
Presynaptic Signals into the Size of a PSP | 1046 | | Cells of the Nervous System:
A Preliminary Sketch | 1013 | The Grand PSP is Translated into Nerve Impulse Frequency for Long-Distance Transmission | 1047 | | Nerve Cells Carry Electrical Signals | 1015 | Encoding Requires a Combination of Different
Voltage-sensitive Channels | 1048 | | Nerve Cells Communicate Chemically at
Synapses | 1016 | Early K ⁺ Channels Help to Make the Firing Rate
Proportional to the Stimulus | 1048 | | Neural Tissue Consists of Neurons and
Glial Cells | 1016 | Adaptation Lessens the Response to an Unchanging Stimulus | 1049 | | Summary | 1017 | Not All Signals Are Delivered via the Axon | 1050 | | Voltage-gated Channels and the Action | | Summary | 1052 | | Potential | 1018 | Channel Regulation and Memory | 1052 | | The Na ⁺ -K ⁺ Pump Charges the Battery That Powers
the Action Potential | 1018 | The Distribution of Ion Channels in a Muscle Cell
Changes in Response to Dencryation | 1055 | | The Membrane Potential Depends on Selective Membrane Permeability | 1019 | The Receptivity of a Muscle Cell Can Be Controlled by Electrical Stimulation | 1054 | | Ion Channels Are Characterized by Their Selectivity,
Their Gating, and Their Sensitivity to Specific Toxins | 1022 | The Site of a Synaptic Contact Is Marked by a
Persistent Specialization of the Basal Lamina | 1054 | | Depolarization Causes Na L Channels First to Open and Then to Become Inactivated | 1023 | Synaptic Plasticity Provides a Mechanism for Memory | 1053 | | Fluctuations in the Transmembrane Current Suggest
That Individual Channels Are Opening and Closing | 10.20 | A Short-Term Memory Is Registered by Modification of Channel Proteins | 1056 | | Randomly | 1023 | Memory Remains Mysterious | 1058 | | Gated Channels Open and Close in an All-or-None
Fashion | 1024 | Summary | 1058 | | The Membrane Electric Field Controls the Energies of the Different Channel Conformations | 1025 | Stimulus Magnitude Is Reflected in the Receptor | 1058 | | Voltage-gated Na ⁺ Channels Are Responsible for the | 140- | Potential | 1059 | | Action Potential Action Potentials Are All-or-None | 1027 1028 | Sense Receptors Are Tuned to Detect Specific Stimuli | 1061 | | Voltage Changes Can Spread Passively Within a | 1020 | Rod Cells Can Detect a Single Photon The Visual World Is Mapped onto a Sequential | 1063 | | Neuron | 1028 | Hierarchy of Arrays of Neurons | 1064 | Organelle Vacuoles As Plants Grow, They Accumulate Water in Their 1089 1090 In the Visual Cortex of the Brain, the Projections from the Two Eyes are Mapped in Alternating Stripes Active Synapses Tend to Displace Inactive Synapses 1122 ### **XXVIII** List of Topics | Vacuoles Can Function
as Storage Organelles | 1124 | Cell Growth and Division | 1133 | |---|------|---|------| | Plant Cells Exocytose But Generally Seem Not to
Endocytose Macromolecules | 1124 | Most New Plant Cells Arise in Special Areas Called
Meristems | 1134 | | Golgi Vesicles Deliver Cell-Wall Material to Specific
Regions of Plasma Membrane | 1125 | The Shape of a Growing Plant Cell Is Determined by the Organization of Cellulose Microfibrils | 1135 | | Cellulose Synthesis Occurs at the Surface of Plant
Cells | 1128 | A Preprophase Band of Microtubules Marks the
Future Plane of Cell Division | 1136 | | Cortical Microtubules Orient the Extracellular
Deposition of Cellulose Microfibrils | 1128 | Hormones Help Control the Growth and Shape of Plants | 1139 | | The Movement of Materials in Large Plant Cells is
Driven by Cytoplasmic Streaming | 1130 | Tissue Culture Facilitates Studies of Mechanisms of
Cell Determination in Plants | 1139 | | The Interaction of Actin and Myosin Drives
Cytoplasmic Streaming in Giant Algal Cells | 1131 | Plant Cells Without Their walls Can Be Manipulated
Much Like Animal Cells | 1142 | | Regions of the Plant Cell Cytoskelcton Can Be
Reorganized in Response to Local Stimuli | 1132 | Summary | 1143 | | Summary | 1133 | References | 1144 |