Indice generall

1. Conceptos básicos 1
1.1. Introducción 1
1.2. Análisis multivariante o multivariado 2
1.3. Vector de medias 4
1.4. Covarianzas y correlaciones 5
1.4.1. Autovalores y autovectores de Σ 8
1.5. La distribución normal multivariada 10
1.6. Similaridad y distancia 11
1.6.1. Similaridad 12
1.6.2. Distancia entre dos elementos A y B 13
2. Componentes principales y análisis factorial. 17
2.1. Introducción 17
2.2. Análisis de componentes principales 17
2.2.1. Conceptos fundamentales para la construcción de los componentes principales 18
2.2.2. Elección del número de componentes principales 20
2.2.3. Interpretación de los componentes principales. 21
2.2.1. Observaciones respecto de los resultados 21
2.3. Análisis factorial 32
2.3.1. El análisis factorial. 32
2.3.2. El modelo 33
2.3.3. Las comunalidades 34
2.3.4. Extracción de factores 35
2.3.\%. Interpretación de los factores 36
2.3.6. Rotación de factores. 36
2.3.7. Número de factores 37
2.3.8. Importancia de cada factor 38
2.3.9. Puntuaciones factoriales 39
2.3.10. Validación de los resultados 39
2.3.11. Número de elementos de la muestra 39
2.3.12. Consideraciones generales a seguir en un análisis factorial 39
3. Análisis de conglomerados 49
3.1. Introducción 49
3.2. Técnica jerárquica aglomerativa 50
3.2.1. Limitaciones a los métodos jerárquicos 55
3.3. Técnicas no jerárquicas: El método de K medias 55
3.4. Recomendaciones prácticas. 58
3.4.1. Número de conglomerados 58
3.4.2. Variables estandarizadas y categóricas 59
3.4.3. Validación de los conglomerados 59
3.4.4. Interpretación de los resultados 60
3.4.5. La reducción de la dimensión y la formación de los conglomerados 60
4. Escalamiento multidimensional 63
4.1. Introducción 63
4.2. Tipos de escalamiento multidimensional 64
4.3. El escalamiento multidimensional básico o o métrico 65
4.4. El escalamiento multidimensional no métrico 71
4.5. Elección e interpretación de las dimensiones del espacio métrico de la configuración 74
5. El modelo de regresión lineal 75
5.1. Introducción 75
5.2. El modelo de regresión lineal simple 76
5.2.1. Estimación del modelo 77
5.2.2. Adecuación del modelo a nivel de muestra 82
5.2.3. Adecuación del modelo a la población 84
5.2.2. Verificación de los supuestos del modelo. 85 85
5.2.5. Utilización del modelo: estimación de la respuesta media e individual de Y 87
5.2.6. Consideraciones generales 88
5.3. Regresión lineal múltiple 89
5.3.1. Estimación de parámetros. 90
5.3.2. Adecuación del modelo a los elementos de la muestra 91
5.3.3. Adecuación del modelo a los elementos de la población 92
5.3.4. Verificación de los supuestos del modelo 93
5.3.5. Usos del modelo para la predicción 93
5.3.6. Multicolinealidad 93
5.4. Modelos especiales de regresión. 100
5.1.1. Modelos de regresión polinomiales 100
5.4.2. Modelos de regresión con variables independientes cualitativas 102
6. Análisis discriminante 107
6.1. Introducción 107
6.2. El análisis discriminante lineal 108
6.2.1. La discriminante lineal de Fisher para dos grupos 109
6.2.2. Regla de clasificación y la discriminante lineal de Fisher 110
6.2.3. Etapas del análisis discriminante 111
6.3. El clasificador de Bayes y la discriminante lineal 116
6.3.1. El clasificador de Bayes 116
6.3.2. Clasificación a partir de los costos por mala clasificación 117
(6.3.3. El clasificador de Bayes para distribuciones normales 118
7. Regresión logística binaria 121
7.1. Introducción 121
7.2. El modelo de regresión logística binaria. 123
7.3. Estimación de los parámetros 127
7.3.1. Evaluación de la adecuación del modelo a los datos disponibles y a la población 128
7.4. Interpretación de los resultados. 130
7.5. Evaluación de la capacidad predictiva del modelo 134
7.5.1. El método "holdout" o de validación cruzada 134
T.5.2. Tabla de confusión 134
7.5.3. Curva ROC 136
7.5.1. La curva de ganancia 138
8. $\Lambda . \mathrm{NOV} \Lambda$ de un solo factor 14
8.1. Introducción 141
8.2. El modelo ANOVA de un solo factor 142
8.2.1. El método de Bonferroni para comparar, a posteriori, las medias de los tratamientos 146
9. MANOVA de un solo factor 149
9.1. Introducción 149
9.2. MANOVA de un solo factor 150
9.2.1. Medida de bondad de ajuste del modelo. 152
9.2.2. Pruebas a posteriori. 152
10. Modelos de ecuaciones estructurales 155
10.1. Introducción 155
10.2. Fases del análisis de las ecuaciones estructurales 165
III.2.I. Especificación del modelo 165
111.2.2. Identificación del modelo 165
111.2.3. Estimación de los parámetros del modelo 166
111.2.1. Análisis de la adecuación del modelo 169
10.3. Tamaño de la muestra y los supuestos del modelo. 172
10.4. Variables nominales y ordinales. 173
10.5. Interpretabilidad y nueva especificación del modelo 173
11. Clases latentes 183
11.1. Introducción 183
11.2. El modelo 184
11.3. Estimación de parámetros 185
11.4. Adecuación del modelo. 185
11.5. Regresión con clases latentes. 190
Bibliografía 195
